Skip to main content
Log in

On the role of dust in the cometary plasma

  • Gravity, Astrophysics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The cometary coma consists of neutral gas, plasma, and dust grains. The dust grains can influence both the neutral and charged coma’s constituents. Usually, the presence of dust particles in a plasma results in additional losses of both electrons and ions due to the plasma recombination on the particle surfaces. Solar radiation makes the impact of dust even more complicated depending on the solar flux, the dust number density, the photoelectric properties of the dust particles, the dust particle composition, the distribution of the sizes, etc. We propose a simple kinetic model evaluating the role of dust particles in the coma plasma chemistry and demonstrate that this role can be crucial, resulting in a nontrivial behavior of both the electron and ion densities of the plasma. We show that a coma’s dust particles can be negatively as well as positively charged depending on their composition. These opposite charges of the grains can result in fast coagulation of dust particles, thus, forming complex aggregate shapes of cometary grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Vladimirov and K. Ostrikov, Phys. Rep. 393, 175 (2004).

    Article  ADS  Google Scholar 

  2. V. E. Fortov et al., Phys. Rep. 421, 1 (2005).

    Article  ADS  Google Scholar 

  3. S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas (Imperial College, London, 2005).

    MATH  Google Scholar 

  4. M. R. Combi, W. M. Harris, and W. H. Smyth, in Comets II, Ed. by M. C. Festou et al. (Univ. of Arizona, Tuscon, 2004).

    Google Scholar 

  5. K. Altwegg, H. Balsiger, and J. Geiss, Space Sci. Rev. 90, 3 (1999).

    Article  ADS  Google Scholar 

  6. S. A. Haider and A. Bhardwaj, Icarus 175, 196 (2005).

    Article  ADS  Google Scholar 

  7. S. D. Rodgers et al., in Comets II, Ed. by M. C. Festou et al. (Univ. of Arizona, Tuscon, 2004), p. 505; H. U. Schmidt et al., Comput. Phys. Commun. 49, 17 (1988).

    Google Scholar 

  8. Handbook of Optical Constants of Solids, Ed. by. E. D. Palik (Academic, New York, 1998).

    Google Scholar 

  9. B. A. Klumov, S. I. Popel, and R. Bingham, JETP Lett. 72, 364 (2000).

    Article  ADS  Google Scholar 

  10. B. A. Klumov, G. Morfill, and S. I. Popel, JETP 100, 152 (2005).

    Article  Google Scholar 

  11. B. A. Klumov, S. V. Vladimirov, and G. Morfill, JETP Lett. 82, 632 (2005).

    Article  Google Scholar 

  12. B. T. Draine, Astron. J. Suppl. 36, 595 (1978); J. C. Weingartner, B. T. Draine, and D. K. Barr, Astrophys. J. 645, 1188 (2006).

    Article  ADS  Google Scholar 

  13. S. A. Khrapak et al., Phys. Rev. E 72, 016406 (2005).

  14. S. A. Khrapak, B. A. Klumov, and G. E. Morfill, Phys. Plasmas 14, 034502 (2007).

    Google Scholar 

  15. R. M. Haberli et al., Icarus 130, 373 (1997).

    Article  ADS  Google Scholar 

  16. L. Kolokolova et al., in Comets II, Ed. by M. Festou et al. (Univ. of Arizona, Tucson, 2004), p. 577.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klumov, B.A., Vladimirov, S.V. & Morfill, G.E. On the role of dust in the cometary plasma. Jetp Lett. 85, 478–482 (2007). https://doi.org/10.1134/S0021364007100025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364007100025

PACS numbers

Navigation