Skip to main content
Log in

Thermoelectric properties of La0.75Ca0.25MnO3 manganite at ultrahigh pressures up to 20 GPa

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Pressure dependences of the thermopower and electrical resistivity of the La0.75Ca0.25MnO3 manganite are measured in the pressure range 0–20 GPa at room temperature. The absolute value of the thermopower increases in the pressure range 0–3 GPa and decreases at higher pressures. At the same time, the electrical resistivity decreases over the entire pressure range. It is found that the competing effect of the closing of the bandgap, which is determined by the activation energy for the thermopower, and the pressure broadening of the d bands is the cause of the observed behavior of the thermoelectric properties of La0.75Ca0.25MnO3, which is untypical for the majority of dielectrics and semiconductors with single-band unipolar conductivity in the absence of phase transitions and is accompanied by a change in the sign of the pressure coefficient of the thermopower. The interrelation between the magnetic and thermoelectric properties of manganites under pressure is analyzed in the framework of the double exchange model. The causes of the considerable decrease in the pressure coefficients of the insulator-metal transition and Curie temperatures under pressure experimentally observed in manganites are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  2. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  Google Scholar 

  3. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).

    Article  ADS  Google Scholar 

  4. P.-G. De Gennes, Phys. Rev. 118, 141 (1960).

    Article  ADS  Google Scholar 

  5. P. Postorino, A. Congeduti, P. Dore, et al., Phys. Rev. Lett. 91, 175501 (2003).

  6. A. Congeduti, P. Postorino, E. Caramagno, et al., Phys. Rev. Lett. 86, 1251 (2001).

    Article  ADS  Google Scholar 

  7. C. Meneghini, D. Levy, S. Mobilio, et al., Phys. Rev. B 65, 012111 (2001).

  8. D. P. Kozlenko, S. E. Kichanov, V. I. Voronin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 82, 501 (2005) [JETP Lett. 82, 447 (2005)].

    Google Scholar 

  9. M. F. Hundley and J. J. Neumeier, Phys. Rev. B 55, 11511 (1997).

    Google Scholar 

  10. H. Y. Hwang, T. T. M. Palstra, S.-W. Cheong, and B. Batlogg, Phys. Rev. B 52, 15 046 (1995).

    Google Scholar 

  11. I. M. Tsidil’kovskiĭ, V. V. Shchennikov, and N. G. Gluzman, Fiz. Tekh. Poluprovodn. (Leningrad) 17, 958 (1983) [Sov. Phys. Semicond. 17, 604 (1983)].

    Google Scholar 

  12. S. V. Ovsyannikov and V. V. Shchennikov, Pis’ma Zh. Éksp. Teor. Fiz. 80, 41 (2004) [JETP Lett. 80, 35 (2004)].

    Google Scholar 

  13. S. V. Ovsyannikov, V. V. Shchennikov, and A. Misyuk, Pis’ma Zh. Éksp. Teor. Fiz. 80, 459 (2004) [JETP Lett. 80, 405 (2004)].

    Google Scholar 

  14. V. V. Shchennikov, S. V. Ovsyannikov, A. Y. Derevskov, and V. V. Shchennikov, Jr., J. Phys. Chem. Solids 67, 2203 (2006).

    Article  Google Scholar 

  15. L. G. Khvostantsev, L. F. Vereshchagin, and N. M. Uliyanitskaya, High Temp. High. Press. 5, 261 (1973).

    Google Scholar 

  16. D. A. Polvani, J. F. Meng, M. Hasegawa, et al., Rev. Sci. Instrum. 70, 3586 (1999).

    Article  ADS  Google Scholar 

  17. R. D. Barnard, Thermoelectricity in Metals and Alloys (Taylor and Francis, London, 1972).

    Google Scholar 

  18. T. T. M. Palstra, A. P. Ramirez, S.-W. Cheong, et al., Phys. Rev. B 56, 5104 (1997).

    Article  ADS  Google Scholar 

  19. R. Mahendrian, S. K. Tiwary, A. K. Raychaudhuri, et al., Phys. Rev. B 53, 3348 (1996).

    Article  ADS  Google Scholar 

  20. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979; Mir, Moscow, 1982).

    Google Scholar 

  21. S. I. Vecherskiĭ, N. N. Batalov, N. O. Esina, and G. Sh. Shekhtman, Fiz. Tverd. Tela (St. Petersburg) 45, 1569 (2003) [Phys. Solid State 45, 1648 (2003)].

    Google Scholar 

  22. A. S. Panfilov and I. V. Svechkarev, Fiz. Tekh. Vys. Davleniĭ, No. 2, 59 (1980).

  23. V. Heine, Phys. Rev. 153, 673 (1967).

    Article  ADS  Google Scholar 

  24. N. Furukawa, in Physics of Manganites, Ed. by T. A. Kaplan and S. D. Mahanti (Kluwer Academic/Plenum, New York, 1999), pp. 1–38.

    Google Scholar 

  25. W. A. Harrison, The Electronic Structure and Properties of Solids (Freeman, San Francisco, 1980).

    Google Scholar 

  26. V. Laukhin, J. Fontcuberta, J. L. Garcia-Munoz, and X. Obradors, Phys. Rev. B 56, R10 009 (1997).

    Google Scholar 

  27. J. Fontcuberta, V. Laukhin, and X. Obradors, Phys. Rev. B 60, 6266 (1999).

    Article  ADS  Google Scholar 

  28. D. P. Kozlenko and B. N. Savenko, J. Phys.: Condens. Matter 16, 9031 (2004).

    Article  ADS  Google Scholar 

  29. G. Zhao, K. Conder, H. Keller, and K. A. Muller, Nature 381, 676 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.P. Kozlenko, S.V. Ovsyannikov, V.V. Shchennikov, V.I. Voronin, B.N. Savenko, 2007, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 85, No. 4, pp. 242–246.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlenko, D.P., Ovsyannikov, S.V., Shchennikov, V.V. et al. Thermoelectric properties of La0.75Ca0.25MnO3 manganite at ultrahigh pressures up to 20 GPa. Jetp Lett. 85, 203–207 (2007). https://doi.org/10.1134/S0021364007040042

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364007040042

PACS numbers

Navigation