Skip to main content
Log in

Crystallization waves in a dusty plasma

  • Plasma, Gases
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Crystallization waves in the dusty component of a complex plasma, which were recently observed experimentally, have been investigated numerically. The evolution of the system of charged microparticles whose interaction between each other is described by a screened Coulomb potential (Yukawa potential) has been numerically simulated using the molecular dynamics method. It has been shown that the process of the formation and propagation of a crystallization wave in such a system is fundamentally three-dimensional. Analysis of the local structure of dust particles behind the crystallization wave front indicates the coexistence of different types of the crystal lattice including the metastable phase, i.e., a nonequilibrium phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys. Usp. 40, 53 (1997)].

    Google Scholar 

  2. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (Inst. of Physics, Bristol, 2002).

    Book  Google Scholar 

  3. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, et al., Usp. Fiz. Nauk 174, 495 (2004) [Phys. Usp. 47, 447 (2004)].

    Google Scholar 

  4. S. V. Vladimirov and K. Ostrikov, Phys. Rep. 393, 175 (2004).

    Article  ADS  Google Scholar 

  5. M. Horanyi et al., Rev. Geophys. 42, RG4002 (2004).

  6. B. A. Klumov, S. I. Popel, and G. E. Morfill, JETP 100, 152 (2005).

    Article  Google Scholar 

  7. B. A. Klumov, S. V. Vladimirov, and G. E. Morfill, JETP Lett. 82, 632 (2005).

    Article  Google Scholar 

  8. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, et al., Phys. Rep. 421, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  9. G. E. Morfill et al., Phys. Rev. Lett. 92, 175004 (2004).

  10. J. H. Chu and I. Lin, Phys. Rev. Lett. 72, 4009 (1994).

    Article  ADS  Google Scholar 

  11. H. Thomas, G. Morfill, V. Demmel, and J. Goree, Phys. Rev. Lett. 73, 652 (1994).

    Article  ADS  Google Scholar 

  12. H. Ikezi, Phys. Fluids 29, 1764 (1986).

    Article  ADS  Google Scholar 

  13. M. Rubin-Zuzic et al., Nature Phys. 2, 181 (2006).

    Article  ADS  Google Scholar 

  14. M. Rubin-Zuzic et al., in Proceedings of 4th International Conference on the Physics of Dusty Plasmas, ICPDP4 (Orlean, France, 2005).

    Google Scholar 

  15. U. Konopka, G. Morfill, and L. Ratke, Phys. Rev. Lett. 84, 891 (2000).

    Article  ADS  Google Scholar 

  16. A. V. Ivlev et al., Phys. Plasmas 12, 092104 (2005).

  17. B. A. Klumov, A. V. Ivlev, and G. Morfill, JETP Lett. 78, 300 (2003).

    Article  ADS  Google Scholar 

  18. D. Samsonov et al., Phys. Rev. Lett. 92, 255004 (2004).

  19. M. Zuzic, A. V. Ivlev, J. Goree, et al., Phys. Rev. Lett. 85, 4064 (2000).

    Article  ADS  Google Scholar 

  20. A. P. Hynninen and M. Dijkstra, Phys. Rev. E 72, 051402 (2005).

    Google Scholar 

  21. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. Lett. 47, 1297 (1981); Phys. Rev. B 28, 784 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.A. Klumov, M. Rubin-Zuzic, G.E. Morfill, 2006, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 84, No. 10, pp. 636–641.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klumov, B.A., Rubin-Zuzic, M. & Morfill, G.E. Crystallization waves in a dusty plasma. Jetp Lett. 84, 542–546 (2007). https://doi.org/10.1134/S0021364006220036

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364006220036

PACS numbers

Navigation