Skip to main content
Log in

Giant magnetoresistance oscillations induced by microwave radiation and a zero-resistance state in a 2D electron system with a moderate mobility

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The effect of a microwave field in the frequency range from 54 to 140 GHz on the magnetotransport in a GaAs quantum well with AlAs/GaAs superlattice barriers and with an electron mobility no higher than 106 cm2/V s is investigated. In the given two-dimensional system under the effect of microwave radiation, giant resistance oscillations are observed with their positions in the magnetic field being determined by the ratio of the radiation frequency to the cyclotron frequency. Earlier, such oscillations had only been observed in GaAs/AlGaAs heterostructures with much higher mobilities. When the samples under study are irradiated with a 140-GHz microwave field, the resistance corresponding to the main oscillation minimum, which occurs near the cyclotron resonance, appears to be close to zero. The results of the study suggest that a mobility value lower than 106 cm2/V s does not prevent the formation of zero-resistance states in a magnetic field in a two-dimensional system under the effect of microwave radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Zudov, R. R. Du, J. A. Simmons, et al., Phys. Rev. B 64, 201311(R) (2001).

  2. V. I. Ryzhiĭ, Fiz. Tverd. Tela (Leningrad) 11, 2577 (1969) [Sov. Phys. Solid State 11, 2078 (1970)].

    Google Scholar 

  3. A. A. Bykov, G. M. Gusev, Z. D. Kvon, et al., Pis’ma Zh. Éksp. Teor. Fiz. 53, 407 (1991) [JETP Lett. 53, 427 (1991)].

    ADS  Google Scholar 

  4. E. Vasiliadou, G. Muller, D. Heitmann, et al., Phys. Rev. B 48, 17 145 (1993).

  5. R. G. Mani, J. H. Smet, K. von Klitzing, et al., Nature 420, 646 (2002).

    Article  ADS  Google Scholar 

  6. M. A. Zudov, R. R. Du, L. N. Pfeiffer, et al., Phys. Rev. Lett. 90, 046807 (2003).

    Google Scholar 

  7. S. I. Dorozhkin, Pis’ma Zh. Éksp. Teor. Fiz. 77, 681 (2003) [JETP Lett. 77, 577 (2003)].

    Google Scholar 

  8. A. V. Andreev, I. L. Aleiner, and A. J. Millis, Phys. Rev. Lett. 91, 056803 (2003).

    Google Scholar 

  9. A. C. Durst, S. Sachdev, N. Read, et al., Phys. Rev. Lett. 91, 086803 (2003).

  10. V. Ryzhii and V. Vyrkov, Phys. Rev. B 68, 165406 (2003).

  11. V. Shikin, Pis’ma Zh. Éksp. Teor. Fiz. 77, 281 (2003) [JETP Lett. 77, 236 (2003)].

    Google Scholar 

  12. V. Ryzhii, A. Chaplik, and R. Suris, Pis’ma Zh. Éksp. Teor. Fiz. 80, 412 (2004) [JETP Lett. 80, 363 (2004)].

    Google Scholar 

  13. M. G. Vavilov and I. L. Aleiner, Phys. Rev. B 69, 035303 (2004).

    Google Scholar 

  14. I. A. Dmitriev, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. B 70, 165305 (2004).

    Google Scholar 

  15. I. A. Dmitriev, M. G. Vavilov, I. L. Aleiner, et al., Phys. Rev. B 71, 115316 (2005).

    Google Scholar 

  16. A. Kashuba, Pis’ma Zh. Éksp. Teor. Fiz. 83, 351 (2006) [JETP Lett. 83, 293 (2006)].

    Google Scholar 

  17. S. I. Dorozhkin, Usp. Fiz. Nauk 175, 213 (2005).

    Article  Google Scholar 

  18. A. A. Bykov, A. K. Bakarov, A. K. Kalagin, and A. I. Toropov, Pis’ma Zh. Éksp. Teor. Fiz. 81, 348 (2005) [JETP Lett. 81, 284 (2005)].

    Google Scholar 

  19. A. A. Bykov, Jing-qiao Zhang, S. Vitkalov, et al., Phys. Rev. B 72, 245307 (2005).

  20. A. A. Bykov, A. K. Bakarov, A. K. Kalagin, et al., Physica E (Amsterdam) 34, 97 (2006).

    ADS  Google Scholar 

  21. S. A. Studenikin, M. Potemski, A. Sachrajda, et al., Phys. Rev. B 71, 245313 (2005).

    Google Scholar 

  22. J. H. Smet, B. Gorshunov, C. Jiang, et al., Phys. Rev. Lett. 95, 116804 (2005).

  23. M. A. Zudov, R. R. Du, L. N. Pfeiffer, et al., Phys. Rev. Lett. 96, 236804 (2006).

    Google Scholar 

  24. R. G. Mani, J. H. Smet, K. von Klitzing, et al., Phys. Rev. B 69, 193304 (2004).

  25. M. A. Paalanen, D. C. Tsui, and J. C. M. Hwang, Phys. Rev. Lett. 51, 2226 (1983).

    Article  ADS  Google Scholar 

  26. É. M. Baskin, L. I. Magarill, and M. V. Éntin, Zh. Éksp. Teor. Fiz. 75, 723 (1978) [Sov. Phys. JETP 48, 365 (1978)].

    Google Scholar 

  27. A. D. Mirlin, D. G. Polyakov, F. Evers, et al., Phys. Rev. Lett. 87, 126805 (2001).

    Google Scholar 

  28. A. A. Bykov, A. K. Bakarov, A. V. Goran, et al., Pis’ma Zh. Éksp. Teor. Fiz. 78, 165 (2003) [JETP Lett. 78, 134 (2003)].

    Google Scholar 

  29. R. G. Mani, J. H. Smet, K. von Klitzing, et al., Phys. Rev. Lett. 92, 146801 (2004).

  30. A. A. Bykov, A. K. Kalagin, and A. K. Bakarov, Pis’ma Zh. Éksp. Teor. Fiz. 81, 646 (2005) [JETP Lett. 81, 523 (2005)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Bykov, A.K. Bakarov, D.R. Islamov, A.I. Toropov, 2006, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 84, No. 7, pp. 466–469.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykov, A.A., Bakarov, A.K., Islamov, D.R. et al. Giant magnetoresistance oscillations induced by microwave radiation and a zero-resistance state in a 2D electron system with a moderate mobility. Jetp Lett. 84, 391–394 (2006). https://doi.org/10.1134/S0021364006190076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364006190076

PACS numbers

Navigation