Skip to main content
Log in

Band structure and optical transitions in semiconducting double-wall carbon nanotubes

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The electronic structure of semiconducting double-wall carbon nanotubes (CNTs) is calculated using the linearized augmented cylindrical wave method. The consideration is performed in the framework of the local density functional theory and the muffin-tin (MT) approximation for the one-electron Hamiltonian. The electronic spectrum of a double-wall CNT is determined by the free motion of electrons in the interatomic space of the two cylindrical layers, scattering by the MT spheres, and tunneling through the classically impenetrable region. Calculated results for double-wall CNTs of the (n, 0)@(n′, 0) zigzag type indicate that the shift of the band-gap width depends on whether n and n′ are divided by 3 with a remainder of 1 or 2. It is found that, regardless of the type of the inner tube, the energy gap E g of the outer tube decreases by 0.15–0.22 eV if the tube belongs to the sequence n = 2 (mod 3). For the outer tubes of the sequence n = 1 (mod 3), the shifts of the band gap ΔE g are always negative −0.15 ≤ ΔE g ≤ −0.05 eV. In both cases, the shifts ΔE g weakly oscillate rather than decrease in going to tubes of a larger diameter d. For the inner tubes, the changes in the band gap ΔE g are more sensitive to the diameter. At 10 ≤ n ≤ 16, the shifts ΔE g are positive and the maximum value of ΔE g equals 0.39 and 0.32 for the sequences n = 2 (mod 3) and n = 1 (mod 3), respectively. In going to the inner tubes of a larger diameter, ΔE g rapidly drops and then oscillates in the range from −0.05 to 0.06 eV. The calculated results indicate that the shifts of the optical band gaps in core and shell tubes upon the formation of double-wall CNTs are significant, which must hinder the identification of double-wall CNTs by optical methods. On the other hand, the obtained results open up possibilities for a more detailed classification of double-wall nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Google Scholar 

  2. A. V. Eletskiĭ, Usp. Fiz. Nauk 167, 945 (1997) [Phys. Usp. 40, 899 (1997)].

    Article  Google Scholar 

  3. J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68, 631 (1992).

    Article  ADS  Google Scholar 

  4. P. N. D’yachkov, Carbon Nanotubes: Structure, Properties, and Applications (Binom, Moscow, 2006) [in Russian].

    Google Scholar 

  5. A. N. Enyashin, G. Seifert, and A. L. Ivanovskiĭ, Pis’ma Zh. Éksp. Teor. Fiz. 80, 709 (2004) [JETP Lett. 80, 608 (2004)].

    Google Scholar 

  6. S. Bandow, K. Hirahara, T. Hiraoka, et al., MRS Bull. 29(4), 260 (2004).

    Google Scholar 

  7. T. Hertel, A. Hagen, V. Talalaev, et al., Nano Lett. 5, 511 (2005).

    Article  ADS  Google Scholar 

  8. P. N. D’yachkov, O. M. Kepp, and A. V. Nikolaev, Dokl. Akad. Nauk 365, 215 (1999).

    Google Scholar 

  9. P. N. D’yachkov and D. V. Kirin, Dokl. Akad. Nauk 369, 639 (1999).

    MATH  Google Scholar 

  10. P. N. D’yachkov, in Encyclopedia of Nanoscience and Nanotechnology, Ed. by Hari Singh Nalwa (Am. Sci., Los Angeles, CA, 2003), Vol. 1, p. 191.

    Google Scholar 

  11. O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  ADS  Google Scholar 

  12. D. D. Koelling and G. O. Arbman, J. Phys. F: Met. Phys. 5, 2041 (1975).

    Article  ADS  Google Scholar 

  13. P. N. D’yachkov, H. Hermann, and D. V. Kirin, Appl. Phys. Lett. 81, 5228 (2002).

    Article  ADS  Google Scholar 

  14. P. N. D’yachkov and H. Hermann, J. Appl. Phys. 95, 399 (2004).

    Article  ADS  Google Scholar 

  15. A. Yu. Golovocheva and P. N. D’yachkov, Pis’ma Zh. Éksp. Teor. Fiz. 82, 834 (2005) [JETP Lett. 82, 737 (2005)].

    Google Scholar 

  16. P. N. D’yachkov and D. V. Makaev, Phys. Rev. B 71, 081101(R) (2005).

  17. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys. 73, 494 (1993).

    Article  ADS  Google Scholar 

  18. Ph. Lambin, L. Philippe, J. C. Charlier, and J. P. Michenaud, Comput. Mater. Sci. 2, 350 (1994).

    Article  Google Scholar 

  19. Y.-K. Kwon and D. Tomanek, Phys. Rev. B 58, R16 001 (1998).

  20. Y. Miyamoto, S. Saito, and D. Tomanek, Phys. Rev. B 65, 041402(R) (2001).

  21. S. Sanvito, Y.-K. Kwon, D. Tomanek, and C. J. Lambert, Phys. Rev. Lett. 84, 1974 (2000).

    Article  ADS  Google Scholar 

  22. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280, 1744 (1998).

    Article  ADS  Google Scholar 

  23. B. Shan and K. Cho, Phys. Rev. B 73, 081401(R) (2006).

  24. D. Östling, D. Tomanek, and A. Rosèn, Phys. Rev. B 55, 13 980 (1997).

  25. R. C. Tatar and S. Rabii, Phys. Rev. B 25, 4126 (1982).

    Article  ADS  Google Scholar 

  26. S. M. Bachilo, M. S. Strano, C. Kittrell, et al., Science 298, 2361 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.V. Makaev, P.N. D’yachkov, 2006, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 84, No. 6, pp. 397–402.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makaev, D.V., D’yachkov, P.N. Band structure and optical transitions in semiconducting double-wall carbon nanotubes. Jetp Lett. 84, 335–339 (2006). https://doi.org/10.1134/S0021364006180123

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364006180123

PACS numbers

Navigation