Skip to main content
Log in

Effect of dipole forces on the structure of the liquid phases of DNA

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The dipole-dipole contribution to the energy of the pair interaction between DNA molecules has been calculated and analyzed. Rigid fragments of DNA, i.e., of a length of about the persistent length, which have discrete dipole moments of base pairs, are considered. For a given distance between the centers of mass of molecules, the energy of the dipole-dipole interaction is a function of three angular variables; the angles ϕ1 and ϕ2 between the central dipoles of both molecules and the z axis passing through the centers of the molecules, as well as the angle ξ between long axes of the molecules, are taken as these variables. It is shown that the dipole energy has minima when the mutual orientation of the molecules satisfies one of the following conditions: (i) ϕ1 = ϕ2 = 0 or (ii) ϕ1 = ϕ2 = π. The cholesteric twist angle ξ can be both positive and negative in dependence on the type of the minimum. For realistic cholesteric dispersion parameters, the dipole energy is only slightly lower than the experimentally known binding energy of the molecules in dispersion. The results allow the assumption that the dipole forces significantly affect the structure and other properties of DNA suspensions; in particular, they can lead to nontrivial texture phenomena, biaxial correlation, and multistability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Thomas and T. J. Thomas, Cell Mol. Life Sci. 58, 244 (2001).

    Article  Google Scholar 

  2. L. van Dam, N. Korolev, and L. Nordenskiold, Nucleic Acids Res. 30, 419 (2002).

    Article  Google Scholar 

  3. Yu. M. Evdokimov, V. I. Sal’yanov, B. V. Mkhedlishvili, et al., Sens. Sist. 13, 82 (1999).

    Google Scholar 

  4. E. Raspaud, D. Durand, and F. Livolant, Biophys. J. 88, 392 (2005).

    Article  Google Scholar 

  5. V. A. Belyakov, V. P. Orlov, S. V. Semenov, et al., Liq. Cryst. 20, 777 (1996).

    Google Scholar 

  6. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, 1993; Mir, Moscow, 1982).

    Google Scholar 

  7. A. A. Kornyshev and S. Leikin, J. Chem. Phys. 107, 3656 (1997).

    Article  ADS  Google Scholar 

  8. A. A. Kornyshev and S. Leikin, Phys. Rev. E 62, 2576 (2000).

    Article  ADS  Google Scholar 

  9. A. A. Kornyshev and S. Leikin, Phys. Rev. Lett. 84, 2537 (2001).

    Article  ADS  Google Scholar 

  10. B. Samori, M. A. Osipov, I. Domini, and A. Bartolini, Int. J. Biol. Macromol. 15, 353 (1993).

    Article  Google Scholar 

  11. Y. H. Kim, J. Phys. (Paris) 43, 559 (1982).

    Google Scholar 

  12. G. S. Manning, Biopolymers 19, 37 (1980).

    Article  Google Scholar 

  13. J. Sponer, J. Leszcynski, and P. Hobza, Biopolymers 61, 3 (2002).

    Article  Google Scholar 

  14. A. A. Kornyshev, D. J. Lee, S. Leikin, et al., Phys. Rev. Lett. 95, 148102 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.L. Golo, E.I. Kats, I.P. Kikot’, 2006, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 84, No. 5, pp. 334–338.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golo, V.L., Kats, E.I. & Kikot’, I.P. Effect of dipole forces on the structure of the liquid phases of DNA. Jetp Lett. 84, 275–279 (2006). https://doi.org/10.1134/S0021364006170103

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364006170103

PACS numbers

Navigation