Advertisement

JETP Letters

, Volume 84, Issue 3, pp 167–170 | Cite as

On interlay between the magnetic susceptibilities of localized and itinerant electrons in hole-doped HTSCs

  • M. V. Eremin
  • A. A. Aleev
  • I. M. Eremin
Article

Abstract

In the framework of the singlet-correlated motion of holes over oxygen sites in CuO2 layers, a formula for the dynamic spin susceptibility has been derived taking into account the strong correlation between the magnetizations of the spins of the collective holes and localized moments on copper sites. The calculated behavior of the imaginary part of the susceptibility as a function of the frequency and wave vector is consistent with the available experimental data on the inelastic neutron scattering. The plot of the dispersion of the collective spin modes over the entire Brillouin zone is proposed.

PACS numbers

71.27.+a 74.72.-h 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Izyumov and Yu. N. Skryabin, Basic Models in the Quantum Theory of Magnetism (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2002) [in Russian].Google Scholar
  2. 2.
    S. Pailhes, Y. Sidis, P. Bourges, et al., Phys. Rev. Lett. 93, 167001 (2004).Google Scholar
  3. 3.
    D. Reznik, P. Bourges, L. Pintschovius, et al., Phys. Rev. Lett. 93, 207003 (2004).Google Scholar
  4. 4.
    C. Stock, W. J. L. Buyers, R. A. Cowley, et al., Phys. Rev. B 71, 024522 (2005).Google Scholar
  5. 5.
    M. Arai, T. Nishijima, Y. Endoh, et al., Phys. Rev. Lett. 83, 608 (1999).CrossRefADSGoogle Scholar
  6. 6.
    F. Onufrieva and P. Pfeuty, Phys. Rev. B 65, 054515 (2002).Google Scholar
  7. 7.
    I. Eremin, D. Morr, A. Chubukov, et al., Phys. Rev. Lett. 94, 147001 (2005).Google Scholar
  8. 8.
    P. Schnyder, A. Bill, C. Mudry, et al., Phys. Rev. B 70, 214511 (2004).Google Scholar
  9. 9.
    F. C. Zhang and T. M. Rice, Phys. Rev. B 37, R3759 (1988).CrossRefADSGoogle Scholar
  10. 10.
    M. V. Eremin, S. G. Solov’yanov, S. V. Varlamov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 60, 118 (1994) [JETP Lett. 60, 125 (1994)]; J. Phys. Chem. Solids 56, 1713 (1995); Zh. Éksp. Teor. Fiz. 112, 1763 (1997) [JETP 85, 963 (1997)].Google Scholar
  11. 11.
    N. M. Plakida, R. Hayn, and J.-L. Richard, Phys. Rev. B 51, 16 599 (1995).Google Scholar
  12. 12.
    J. Hubbard and K. P. Jain, J. Phys. C 1, 1650 (1968).CrossRefADSGoogle Scholar
  13. 13.
    A. Yu. Zavidonov and D. Brinkmann, Phys. Rev. B 58, 12 486 (1998).Google Scholar
  14. 14.
    J. Kondo and K. Yamaji, Prog. Theor. Phys. 47, 807 (1972).CrossRefADSGoogle Scholar
  15. 15.
    H. Shimahara and S. Takada, J. Phys. Soc. Jpn. 61, 989 (1992).CrossRefGoogle Scholar
  16. 16.
    S. Winterfeldt and D. Ihle, Phys. Rev. B 58, 9402 (1998).CrossRefADSGoogle Scholar
  17. 17.
    I. Sega, P. Prelovsek, and J. Bonca, Phys. Rev. B 68, 054524 (2003).Google Scholar
  18. 18.
    A. Sherman and M. Schreiber, Phys. Rev. B 68, 094519 (2003).Google Scholar
  19. 19.
    V. Hinkov, P. Bourges, S. Pailhes, et al., cond-mat/0601048.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • M. V. Eremin
    • 1
  • A. A. Aleev
    • 1
  • I. M. Eremin
    • 2
    • 3
  1. 1.Faculty of PhysicsKazan State UniversityKazanRussia
  2. 2.Max-Planck Institut für Physik Komplexer SystemeDresdenGermany
  3. 3.Technische Universität Carolo-Wilhelmina zu BraunschweigBraunschweigGermany

Personalised recommendations