Advertisement

JETP Letters

, Volume 84, Issue 3, pp 151–155 | Cite as

Phase transformations in Pr1–x Sr x CoO3

  • I. O. Troyanchuk
  • D. V. Karpinskiĭ
  • A. N. Chobot
  • D. G. Voĭitsekhovich
  • V. M. Dobryanskiĭ
Article

Abstract

The elastic properties and crystal structure of the Pr1−x Sr x CoO3 system are studied. Two types of crystal structure transitions are found. For the composition x = 0.5, the monoclinic phase transforms to a rhombohedral one in the high-temperature transition (T ≈ 310 K), while the unit cell symmetry remains monoclinic though the unit cell parameters change drastically in the low-temperature transformation (T ≈ 110 K). It is suggested that the high-temperature transition is caused by the dimensional effect, while the low-temperature transition is associated with the presence of praseodymium ions actively involved in chemical bonding.

PACS numbers

62.20.Dc 75.50.Dd 76.30.Fc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. M. Raccah and J. B. Goodenough, Phys. Rev. 155, 932 (1967).CrossRefADSGoogle Scholar
  2. 2.
    R. Marx, Phys. Status Solidi B 99, 555 (1980).Google Scholar
  3. 3.
    M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, et al., Phys. Rev. B 54, 5309 (1996).CrossRefADSGoogle Scholar
  4. 4.
    K. Knigek, P. Novak, and Z. Jirak, Phys. Rev. B 71, 054420 (2005).Google Scholar
  5. 5.
    J. Wu and C. Leighton, Phys. Rev. B 67, 174408 (2003).Google Scholar
  6. 6.
    M. Kriener, C. Zobel, A. Reichl, et al., Phys. Rev. B 69, 094417 (2004).Google Scholar
  7. 7.
    H. Masuda, T. Fujita, T. Miyashita, et al., J. Phys. Soc. Jpn. 72, 873 (2003).CrossRefGoogle Scholar
  8. 8.
    A. Mineshige, M. Kobune, S. Fujii, et al., J. Solid State Chem. 142, 374 (1999).CrossRefADSGoogle Scholar
  9. 9.
    P. L. Kuhns, M. J. R. Hoch, W. G. Moulton, et al., Phys. Rev. Lett. 91, 127202 (2003).Google Scholar
  10. 10.
    H. W. Brinks, H. Fjellvas, A. Kjekshus, and B. C. Hauback, J. Solid State Chem. 147, 464 (1999).CrossRefADSGoogle Scholar
  11. 11.
    A. Ghoshray, B. Bandyopadhyay, K. Ghoshray, et al., Phys. Rev. B 69, 064424 (2004).Google Scholar
  12. 12.
    R. Mahendiran and P. Schiffer, Phys. Rev. B 68, 024427 (2003).Google Scholar
  13. 13.
    R. Maezono and N. Nagaosa, Phys. Rev. B 61, 1825 (2000).CrossRefADSGoogle Scholar
  14. 14.
    Z. Popovic and S. Satpathy, Phys. Rev. Lett. 88, 197201 (2002).Google Scholar
  15. 15.
    M. Abbate, J. C. Fuggle, A. Fujimori, et al., Phys. Rev. B 47, 16 124 (1993).Google Scholar
  16. 16.
    J.-Q. Yan, J.-S. Zhou, and J. B. Goodenough, Phys. Rev. B 70, 014402 (2004).Google Scholar
  17. 17.
    M. E. Lopez-Morales, D. Rios-Jara, J. Taguea, et al., Phys. Rev. B 41, 6655 (1990).CrossRefADSGoogle Scholar
  18. 18.
    E. M. Elbert, D. Chia, M. B. Vandervelde, et al., J. Phys.: Condens. Matter 17, 303 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • I. O. Troyanchuk
    • 1
  • D. V. Karpinskiĭ
    • 1
  • A. N. Chobot
    • 1
  • D. G. Voĭitsekhovich
    • 1
  • V. M. Dobryanskiĭ
    • 1
  1. 1.Joint Institute of Solid State and Semiconductor PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations