Advertisement

JETP Letters

, Volume 84, Issue 3, pp 146–150 | Cite as

Kosterlitz-Thouless phase transition in microcavity polariton system

  • Yu. E. Lozovik
  • A. G. Semenov
  • M. Willander
Article

Abstract

The Kosterlitz-Thouless phase transition in a system of exciton-polaritons in a microcavity is studied. The transition temperature to superfluid state was found as a function of exciton-photon detuning. A nonquadratic dispersion law was taken into account in the framework of the self-consistent harmonic approximation (SCHA).

PACS numbers

42.50.Ar 71.35.Lk 71.36.+c 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kavokin and G. Malpuech, Cavity Polaritons (Elsevier, Amsterdam, 2003).Google Scholar
  2. 2.
    J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973); J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).CrossRefADSGoogle Scholar
  3. 3.
    D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).CrossRefADSGoogle Scholar
  4. 4.
    V. N. Popov, Function Integrals and Collective Excitations (Cambridge Univ. Press, New York, 1981).Google Scholar
  5. 5.
    D. S. Fisher and P. C. Hohenberg, Phys. Rev. B 37, 4936 (1988).CrossRefADSGoogle Scholar
  6. 6.
    M. H. Szymanska, PhD Thesis, Parts I, II, condmat/0204294, cond-mat/0204307.Google Scholar
  7. 7.
    H. Deng, G. Weihs, C. Santori, et al., Science 298, 199 (2002).CrossRefADSGoogle Scholar
  8. 8.
    H. Cao, S. Pau, J. M. Jacobson, et al., Phys. Rev. A 55, 4632 (1997).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • Yu. E. Lozovik
    • 1
  • A. G. Semenov
    • 2
  • M. Willander
    • 3
  1. 1.Institute of SpectroscopyTroitsk, Moscow regionRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Chalmers Technological InstituteGoteborg UniversityGoteborgSweden

Personalised recommendations