JETP Letters

, Volume 84, Issue 3, pp 141–145 | Cite as

Magnetic resonance, phase transition, and phase coexistence in a highly doped La0.8Sr0.2MnO3 manganite near the Curie point

  • V. A. Berezin
  • V. A. Tulin
  • Ya. M. Mukovskiĭ
  • R. V. Privezentsev


Magnetic resonance and microwave impedance are studied in a highly doped La0.8Sr0.2MnO3 manganite near the Curie temperature. A splitting of the resonance line is observed in the temperature region 6° below the temperature corresponding to the maximum impedance at zero magnetic field. The microwave impedance exhibits a hysteretic behavior in increasing and decreasing temperature runs with jumps at the ends of a 2°-wide temperature interval. The splitting of magnetic resonance occurs immediately above the temperature corresponding to the impedance jump in zero magnetic field. The jumps and the hysteretic behavior of the impedance are interpreted as a manifestation of the magnetic structure phase transition of the first order.

PACS numbers

75.47.Lx 76.50.+g 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Searle and S. T. Wang, Can. J. Phys. 47, 2703 (1969).ADSGoogle Scholar
  2. 2.
    K. Kubo and N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1972).CrossRefADSGoogle Scholar
  3. 3.
    É. L. Nagaev, Pis’ma Zh. Éksp. Teor. Fiz. 6, 484 (1967) [JETP Lett. 6, 18 (1967)].Google Scholar
  4. 4.
    É. L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996) [Phys. Usp. 39, 781 (1996)].CrossRefGoogle Scholar
  5. 5.
    M. Uehara, S. Mori, C. H. Chen, and S.-W. Cheong, Nature 399, 560 (1999).CrossRefADSGoogle Scholar
  6. 6.
    M. Uera and S.-W. Cheong, Europhys. Lett. 52, 674 (2000).CrossRefADSGoogle Scholar
  7. 7.
    V. Podzorov, B. G. Kim, V. Kiryukhin, et al., Phys. Rev. B 64, 140406(R) (2001).Google Scholar
  8. 8.
    K. N. Ann, T. Lookman, and A. R. Bishop, Lett. Nature 428, 401 (2004).ADSGoogle Scholar
  9. 9.
    A. Moreo, M. Mayr, A. Feiguin, et al., Phys. Rev. Lett. 84, 5568 (2000).CrossRefADSGoogle Scholar
  10. 10.
    M. Dominguez, S. E. Lofland, M. Bhagat, et al., Solid State Commun. 97, 193 (1996).CrossRefADSGoogle Scholar
  11. 11.
    S. E. Lofland, S. M. Bhagat, H. L. Ju, et al., Phys. Rev. B 52, 15 058 (1995).Google Scholar
  12. 12.
    S. E. Lofland, S. M. Bhagat, C. Kwon, et al., J. Appl. Phys. 81, 1570 (1997).Google Scholar
  13. 13.
    N. V. Volkov, G. A. Petrakovskiĭ, V. N. Vasil’ev, and K. A. Sablina, Fiz. Tverd. Tela (St. Petersburg) 44, 1290 (2002) [Phys. Solid State 44, 1350 (2002)].Google Scholar
  14. 14.
    S. Angappane, M. Pattabiraman, G. Rangarajan, and K. Sethupathi, Phys. Rev. B 69, 094437 (2004).Google Scholar
  15. 15.
    D. C. Rodbell, J. Appl. Phys. 30, 7875 (1959).CrossRefGoogle Scholar
  16. 16.
    A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Fizmatlit, Moscow, 1994; CRC Press, Boca Raton, 1996).Google Scholar
  17. 17.
    C. Kittel, Introduction to Solid State Physics, 4th ed. (Wiley, New York, 1971; Nauka, Moscow, 1978).zbMATHGoogle Scholar
  18. 18.
    J. H. Yoo, Y. Mukarami, D. Shindo, et al., Phys. Rev. Lett. 93, 047204 (2004).Google Scholar
  19. 19.
    J. W. Lynn, R. W. Erwin, J. A. Borchers, et al., Phys. Rev. Lett. 76, 4046 (1996); P. C. Riedi, G. J. Tomka, J. Mac-Manus-Driscoll, et al., J. Magn. Magn. Mater. 189, 274 (1998); J. E. Gordon, C. Marcenat, J. P. Franck, et al., Phys. Rev. B 65, 024441 (2001); G. Zhao, M. B. Hunt, and H. Keller, Phys. Rev. Lett. 78, 955 (1997); R. H. Heffner, L. P. Le, M. F. Hundley, et al., Phys. Rev. Lett. 77, 1869 (1996); J. Mira, J. Rivas, F. Rivadulla, et al., Phys. Rev. B 60, 2998 (1999); P. Novak, M. Marysko, M. M. Savosta, and A. N. Ulyanov, Phys. Rev. B 60, 6655 (1999).CrossRefADSGoogle Scholar
  20. 20.
    S. W. Biernacki, Phys. Rev. B 66, 094405 (2002); Phys. Rev. B 68, 174417 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. A. Berezin
    • 1
  • V. A. Tulin
    • 1
  • Ya. M. Mukovskiĭ
    • 2
  • R. V. Privezentsev
    • 2
  1. 1.Institute of Microelectronics Technology and High Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Moscow Institute of Steel and AlloysMoscowRussia

Personalised recommendations