Advertisement

JETP Letters

, Volume 84, Issue 3, pp 119–123 | Cite as

Relationship between the local electronic and local crystal structures of intermediate-valence Sm1−x Y x S

  • A. P. Menushenkov
  • R. V. Chernikov
  • V. V. Sidorov
  • K. V. Klementiev
  • P. A. Alekseev
  • A. V. Rybina
Article

Abstract

The valence state of samarium and the local environments of samarium and yttrium ions in the intermediatevalence compound Sm1−x Y x S (x = 0.17, 0.25, 0.33, or 0.45) are studied over a wide temperature range of 20–300 K using x-ray absorption spectroscopy. The temperature dependence of Sm-S, Sm-Sm(Y), Y-S, and Y-Sm(Y) bond lengths and the Debye-Waller factors has been found. A direct correlation of changes in the valence of samarium with changes in its local environment parameters depending on yttrium concentration and temperature has been revealed. The main characteristics of the intermediate-valence state of samarium have been determined: the energy width of the 4f level and its position with respect to the Fermi level.

PACS numbers

61.10.Ht 71.28.+d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. I. Khomskiĭ, Usp. Fiz. Nauk 129, 443 (1979) [Sov. Phys. Usp. 22, 879 (1979)].Google Scholar
  2. 2.
    L. D. Finkel’shteĭn, N. N. Efremova, N. I. Lobachevskaya, et al., Fiz. Tverd. Tela (Leningrad) 18, 3117 (1976) [Sov. Phys. Solid State 18, 1818 (1976)].Google Scholar
  3. 3.
    K. Iwasa, T. Tokuyama, M. Kohgi, et al., Physica B (Amsterdam) 359–361, 148 (2005).Google Scholar
  4. 4.
    P.A. Alekseev, J.-M. Mignot, A. Ochiai, et al., Phys. Rev. B 65, 153201 (2002).Google Scholar
  5. 5.
    K. A. Kikoin and A. S. Mishchenko, J. Phys.: Condens. Matter 7, 307 (1995).CrossRefADSGoogle Scholar
  6. 6.
    R. S. Fishman and S. H. Liu, Phys. Rev. Lett. 89, 247203 (2002).Google Scholar
  7. 7.
    K. V. Klementev, J. Phys. D: Appl. Phys. 34, 209 (2001).CrossRefADSGoogle Scholar
  8. 8.
    A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Phys. Rev. B 58, 7565 (1998).CrossRefADSGoogle Scholar
  9. 9.
    J. Röhler, J. Magn. Magn. Mater. 47–48, 175 (1985).CrossRefGoogle Scholar
  10. 10.
    C. M. Varma, Rev. Mod. Phys. 48, 219 (1976).CrossRefADSGoogle Scholar
  11. 11.
    P. P. Deen, D. Braithwaite, N. Kernavanois, et al., Phys. Rev. B 71, 245118 (2005).Google Scholar
  12. 12.
    A. Jayraman, P. D. Dernier, and L. D. Longinotti, Phys. Rev. B 11, 2783 (1975).CrossRefADSGoogle Scholar
  13. 13.
    E. Sevillano, H. Meuth, and J. J. Rehr, Phys. Rev. B 20, 4908 (1979).CrossRefADSGoogle Scholar
  14. 14.
    V. N. Antonov, B. N. Harmon, and A. N. Yaresko, Phys. Rev. B 66, 165208 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. P. Menushenkov
    • 1
  • R. V. Chernikov
    • 1
  • V. V. Sidorov
    • 1
  • K. V. Klementiev
    • 2
  • P. A. Alekseev
    • 3
  • A. V. Rybina
    • 3
  1. 1.Moscow Engineering Physics InstituteState UniversityMoscowRussia
  2. 2.HASYLAB, DESYHamburgGermany
  3. 3.Russian Research Centre Kurchatov InstituteMoscowRussia

Personalised recommendations