Skip to main content
Log in

Simulation of the thermal fragmentation of fullerene C60

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Defect formation and annealing processes in fullerene C60 at T = (4000–6000) K are studied using molecular dynamics with a tight-binding potential. The cluster lifetime until fragmentation, which proceeds, as a rule, through the loss of a C2 dimer, has been found as a function of temperature. The activation energy and the frequency factor in the Arrhenius equation for the fragmentation rate have been found to be E a = (9.2 ± 0.4) eV and A = (8 ± 1) × 1019s−1. It is shown that fragmentation can occur already after the C60 cluster loses its spherical shape. This fact must be taken into account in theoretical calculations of E a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, et al., Nature 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. A. D. Boese and G. E. Scuseria, Chem. Phys. Lett. 294, 233 (1998).

    Article  ADS  Google Scholar 

  3. G. Sánchez, S. Díaz-Tendero, M. Alcamĭ, and F. Martín, Chem. Phys. Lett. 416, 14 (2005).

    Article  ADS  Google Scholar 

  4. C. Lifshitz, Int. J. Mass Spectrom. 198, 1 (2000).

    Article  Google Scholar 

  5. J. Laskin, B. Hadas, T. D. Märk, and C. Lifshitz, Int. J. Mass Spectrom. 177, L9 (1998).

    Article  Google Scholar 

  6. S. Matt, O. Echt, M. Sonderegger, et al., Chem. Phys. Lett. 303, 379 (1999).

    Article  ADS  Google Scholar 

  7. S. Matt, O. Echt, P. Scheirer, and T. D. Märk, Chem. Phys. Lett. 348, 194 (2001).

    Article  ADS  Google Scholar 

  8. K. Hansen and O. Echt, Phys. Rev. Lett. 78, 2337 (1997).

    Article  ADS  Google Scholar 

  9. S. Tomita, J. U. Andersen, C. Gottrup, et al., Phys. Rev. Lett. 87, 073401 (2001).

    Google Scholar 

  10. S. Tomita, J. U. Andersen, K. Hansen, and P. Hvelplund, Chem. Phys. Lett. 382, 120 (2003).

    Article  ADS  Google Scholar 

  11. J. U. Andersen, E. Bonderup, K. Hansen, et al., Eur. Phys. J. D 24, 191 (2003).

    Article  ADS  Google Scholar 

  12. K. Gluch, S. Matt-Leubner, O. Echt, et al., J. Chem. Phys. 121, 2137 (2004).

    Article  ADS  Google Scholar 

  13. B. Concina, K. Gluch, S. Matt-Leubner, et al., Chem. Phys. Lett. 407, 464 (2005).

    Article  ADS  Google Scholar 

  14. E. Kim and Y. H. Lee, Phys. Rev. B 48, 18 230 (1993).

    Google Scholar 

  15. S. G. Kim and D. Tománek, Phys. Rev. Lett. 72, 2418 (1994).

    Article  ADS  Google Scholar 

  16. S. Serra, S. Sanguinetti, and L. Colombo, Chem. Phys. Lett. 225, 191 (1994).

    Article  ADS  Google Scholar 

  17. C. Xu and G. E. Scuseria, Phys. Rev. Lett. 72, 669 (1994).

    Article  ADS  Google Scholar 

  18. E. Kim, D.-H. Oh, C. W. Oh, and Y. H. Lee, Synth. Met. 70, 1495 (1995).

    Article  Google Scholar 

  19. A. I. Podlivaev and L. A. Openov, Pis’ma Zh. Éksp. Teor. Fiz. 81, 656 (2005) [JETP Lett. 81, 533 (2005)].

    Google Scholar 

  20. C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, J. Phys.: Condens. Matter 4, 6047 (1992).

    Article  ADS  Google Scholar 

  21. Yu. E. Lozovik and A. M. Popov, Usp. Fiz. Nauk 167, 751 (1997) [Phys. Usp. 40, 717 (1997)].

    Article  Google Scholar 

  22. I. V. Davydov, A. I. Podlivaev, and L. A. Openov, Fiz. Tverd. Tela (St. Petersburg) 47, 751 (2005) [Phys. Solid State 47, 778 (2005)].

    Google Scholar 

  23. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  ADS  Google Scholar 

  24. P. A. Marcos, J. A. Alonso, and M. J. López, J. Chem. Phys. 123, 204 323 (2005).

    Article  Google Scholar 

  25. K. R. Lykke, Phys. Rev. A 52, 1354 (1995).

    Article  ADS  Google Scholar 

  26. C. E. Klots, Z. Phys. D 20, 105 (1991).

    Article  ADS  Google Scholar 

  27. J. V. Andersen, E. Bonderup, and K. Hansen, J. Chem. Phys. 114, 6518 (2001).

    Article  ADS  Google Scholar 

  28. P. A. Marcos, J. A. Alonso, A. Rubio, and M. J. López, Eur. Phys. J. D 6, 221 (1999).

    Article  ADS  Google Scholar 

  29. K. Hansen, E. E. B. Campbell, and O. Echt, Int. J. Mass Spectrom. 252, 72 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.A. Openov, A.I. Podlivaev, 2006, published in Pis’ma v Zhumal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 84, No. 2, pp. 73–77.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Openov, L.A., Podlivaev, A.I. Simulation of the thermal fragmentation of fullerene C60 . Jetp Lett. 84, 68–72 (2006). https://doi.org/10.1134/S0021364006140050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364006140050

PACS numbers

Navigation