Skip to main content
Log in

Structure and adiabatic compression of dark matter halos: Simple analytic model

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

An analytical model is considered for describing the inner regions of dark matter halos. This model is based on the assumption that the density of dark matter varies according to the power law. The model concerns the distribution function in phase space that is expressed in terms of the adiabatic invariants (radial action and angular momentum). Two types, narrow and broad, are suggested for the angular part of the distribution function. The model makes it possible to explicitly describe the adiabatic compression of halos due to a change induced in the gravitational potential by the condensation of baryonic matter at the center. The change in the density of the dark matter halos is calculated and it is shown that the standard algorithm for calculating the adiabatic compression overestimates the halo density, particularly for the case of strong radial anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bertone and D. Merritt, Mod. Phys. Lett. A 20, 1021 (2005).

    Article  ADS  Google Scholar 

  2. J. Navarro, E. Hayashi, C. Power, et al., Mon. Not. R. Astron. Soc. 349, 1039 (2004).

    Article  ADS  Google Scholar 

  3. J. Diemand, M. Zemp, B. Moore, et al., Mon. Not. R. Astron. Soc. 364, 665 (2005).

    ADS  Google Scholar 

  4. Y. Lu, H. Mo, N. Katz, and M. Weinberg, Mon. Not. R. Astron. Soc. (in press), astro-ph/0508624.

  5. W. Dehnen and D. McLaughlin, Mon. Not. R. Astron. Soc. 363, 1057 (2005).

    Article  ADS  Google Scholar 

  6. C. Austin, L. Williams, E. Barnes, et al., Astrophys. J. 634, 756 (2005).

    Article  ADS  Google Scholar 

  7. J. Taylor and J. Navarro, Astrophys. J. 563, 483 (2001).

    Article  ADS  Google Scholar 

  8. S. Hansen and B. Moore, New Astron. 11, 333 (2006).

    Article  ADS  Google Scholar 

  9. H. Zhao, Mon. Not. R. Astron. Soc. 278, 488 (1996).

    ADS  Google Scholar 

  10. S. Hansen, D. Egli, L. Hollenstein, and C. Salzmann, New Astron. 10, 379 (2005).

    Article  ADS  Google Scholar 

  11. G. Mamon and E. Lokas, Mon. Not. R. Astron. Soc. 363, 705 (2005).

    Article  ADS  Google Scholar 

  12. J. Binney and S. Tremaine, Galactic Dynamics (Princeton Univ. Press, Princeton, 1987).

    MATH  Google Scholar 

  13. P. Gondolo and J. Silk, Phys. Rev. Lett. 83, 1719 (1999).

    Article  ADS  Google Scholar 

  14. A. V. Gurevich and K. P. Zybin, Usp. Fiz. Nauk 165, 723 (1995) [Phys. Usp. 38, 687 (1995)].

    Article  Google Scholar 

  15. J. An and N. Evans, Astrophys. J. 642, 752 (2006).

    Article  ADS  Google Scholar 

  16. W. Dehnen, Mon. Not. R. Astron. Soc. 360, 869 (2005).

    Article  Google Scholar 

  17. S. Kazantzidis, A. Zentner, and A. Kravtsov, Astrophys. J. 641, 647 (2006); astro-ph/0510583.

    Article  ADS  Google Scholar 

  18. S. Hansen, Mon. Not. R. Astron. Soc. 352, L41 (2004).

    Article  ADS  Google Scholar 

  19. G. Blumenthal, S. Faber, R. Flores, and J. Primack, Astrophys. J. 301, 27 (1986).

    Article  ADS  Google Scholar 

  20. O. Gnedin, A. Kravtsov, A. Klypin, and D. Nagai, Astrophys. J. 616, 16 (2004).

    Article  ADS  Google Scholar 

  21. J. Sellwood and S. McGaugh, Astrophys. J. 634, 70 (2005).

    Article  ADS  Google Scholar 

  22. J. Choi, Y. Lu, H. Mo, and M. Weinberg, astro-ph/0604587.

  23. V. Cardone and M. Sereno, Astron. Astrophys. 438, 545 (2005).

    Article  ADS  Google Scholar 

  24. G. Bertone and D. Merritt, Phys. Rev. D 72, 103502 (2005).

    Google Scholar 

  25. M. I. Zel’nikov and E. A. Vasil’ev, Pis’ma Zh. Éksp. Teor. Fiz. 81, 115 (2005) [JETP Lett. 81, 85 (2005)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.A. Vasil’ev, 2006, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 84, No. 2, pp. 49–53.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’ev, E.A. Structure and adiabatic compression of dark matter halos: Simple analytic model. Jetp Lett. 84, 45–49 (2006). https://doi.org/10.1134/S0021364006140013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364006140013

PACS numbers

Navigation