Skip to main content
Log in

Dispersionless modes and the superconductivity of ultrathin films

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A self-consistent analytical solution of the problem of the superconductivity of ultrathin metal films is found within the tight-binding model for normal-metal electrons with a simple example of a film of three atomic layers. Superconductivity is not destroyed in atomically thin films if the energies of the electron subsystem lie near the Fermi surface at least for some values of the quasimomentum component along the film. A substantial increase in the critical temperature of an ultrathin metal film as compared to its bulk value is possible if the electron excitation spectrum contains low-energy modes with an anomalously weak dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).

    Article  MATH  Google Scholar 

  2. J. M. Blatt and C. J. Thompson, Phys. Rev. Lett. 10, 332 (1963).

    Article  ADS  Google Scholar 

  3. B. Abeles, R. W. Cohen, and G. W. Cullen, Phys. Rev. Lett. 17, 632 (1966).

    Article  ADS  Google Scholar 

  4. M. Strongin, O. F. Kammerer, J. E. Crow, et al., Phys. Rev. Lett. 21, 1320 (1968).

    Article  ADS  Google Scholar 

  5. J. M. Dickey and A. Paskin, Phys. Rev. Lett. 21, 1441 (1968).

    Article  ADS  Google Scholar 

  6. M. Strongin, R. S. Thompson, O. F. Kammerer, and J. E. Crow, Phys. Rev. B 1, 1078 (1970).

    Article  ADS  Google Scholar 

  7. M. Yu, M. Strongin, and A. Paskin, Phys. Rev. B 14, 996 (1976).

    Article  ADS  Google Scholar 

  8. High-Temperature Superconductivity, Ed. by V. L. Ginzburg and D. A. Kirzhnits (Nauka, Moscow, 1977; Consultants Bureau, New York, 1982).

    Google Scholar 

  9. A. E. White, R. C. Dynes, and J. P. Garno, Phys. Rev. B 33, 3549 (1986).

    Article  ADS  Google Scholar 

  10. H. M. Jaeger, D. B. Haviland, B. G. Orr, and A. M. Goldman, Phys. Rev. B 40, 182 (1989).

    Article  ADS  Google Scholar 

  11. Jan von Delft and D. C. Ralph, Phys. Rep. 345, 61 (2001).

    Article  MATH  ADS  Google Scholar 

  12. V. M. Galitski and A. I. Larkin, Phys. Rev. B 63, 174506 (2001).

    Google Scholar 

  13. D.-A. Luh, T. Miller, J. J. Paggel, and T.-C. Chiang, Phys. Rev. Lett. 88, 256802 (2002).

    Google Scholar 

  14. A. Frydman, O. Naaman, and R. C. Dynes, Phys. Rev. B 66, 052509 (2002).

    Google Scholar 

  15. Y. Guo, Y.-F. Zhang, X.-Y. Bao, et al., Science 306, 1915 (2004).

    Article  ADS  Google Scholar 

  16. K. A. Parendo, K. H. Sarwa, B. Tan, et al., Phys. Rev. Lett. 94, 197004 (2005).

  17. D. Eom, S. Qin, M.-Y. Chou, and S. K. Shih, Phys. Rev. Lett. 96, 027005 (2006).

    Google Scholar 

  18. J. Vidal, B. Douçot, R. Mosseri, and P. Butaud, Phys. Rev. Lett. 85, 3906 (2000).

    Article  ADS  Google Scholar 

  19. A. M. Bobkov, L.-Y. Zhu, S.-W. Tsai, et al., Phys. Rev. B 70, 144502 (2004).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.S. Barash, P.I. Nagornykh, 2006, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 83, No. 9, pp. 443–449.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barash, Y.S., Nagornykh, P.I. Dispersionless modes and the superconductivity of ultrathin films. Jetp Lett. 83, 376–382 (2006). https://doi.org/10.1134/S0021364006090037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364006090037

PACS numbers

Navigation