Skip to main content
Log in

Method for Increasing the Signal-to-Noise Ratio of Rayleigh Back-Scattered Radiation Registered by a Frequency Domain Optical Reflectometer Using Two-Stage Erbium Amplification

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Simple measures to improve the signal-to-noise ratio of optical frequency domain reflectometer (OFDR) readings are described. After applying a two-stage optical amplification of the backscattered signal, as well as eliminating the source of spurious reflections, it was possible to increase the signal-to-noise ratio of the frequency domain trace from 8 to 19 dB. This technique can be applied in fiber optic sensors and metrology of fiber optic and integrated optical elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Hartog, A.H., Belal, M., and Clare, M.A., Mar. Technol. Soc. J., 2018, vol. 52, p. 58. https://doi.org/10.4031/MTSJ.52.5.7

    Article  Google Scholar 

  2. Spirin, V.V., Lopez-Mercado, C.A., Mégret, P., Korobko, D.A., Zolotovskii, I.O., and Fotiadi A.A., Opt. Sens., 2021, vol. 11772, p. 1177207. https://doi.org/10.1117/12.2589112

    Article  Google Scholar 

  3. Markvart, A.A., Liokumovich, L.B., Medvedev, I.O., and Ushakov, N.A., J. Lightwave Technol., 2021, vol. 39, p. 282. https://doi.org/10.1109/JLT.2020.3024713

    Article  ADS  Google Scholar 

  4. Huan He, Zhiyong Zhao, Songnian Fu, Deming Liu, and Ming Tang., Opt. Lett., 2022, vol. 47, p. 3403. https://doi.org/10.1364/OL.458100

    Article  ADS  Google Scholar 

  5. Liang, Y., Wang, Z., Lin, S., Wang, Y., Jiang, J., Qiu, Z., Liu, Ch., and Rao, Y., Sci. China Inf. Sci., 2022, vol. 65, p. 192303. https://doi.org/10.1007/s11432-021-3329-6

    Article  Google Scholar 

  6. Mohd Saiful Dzulkefly Zan, Ahmed Sabri Kadhim Almoosa, Mohd Faisal Ibrahim, Mohamed M. Elgaud, Abdulwahhab Essa Hamzah, Norhana Arsad, Mohd Hadri Hafiz Mokhtar, and Ahmad Ashrif A. Bakar, Opt. Fiber Technol., 2022, vol. 72, p. 102977. https://doi.org/10.1016/j.yofte.2022.102977

    Article  Google Scholar 

  7. Gorshkov, B.G., Yüksel, K., Fotiadi, A.A., Wuilpart, M., Korobko, D.A., Zhirnov, A.A., Stepanov, K.V., Turov, A.T., Konstantinov, Y.A., and Lobach, I.A., Sensors, 2022, vol. 22, p. 1033. https://doi.org/10.3390/s22031033

    Article  ADS  Google Scholar 

  8. Krivosheev, A.I., Barkov, F.L., Konstantinov, Yu.A., and Belokrylov, M.E., Instrum. Exp. Tech., 2022, vol. 65, p. 687. https://doi.org/10.1134/S0020441222050268

    Article  Google Scholar 

  9. Kwon, Y.-S., Seo, D.-C., Choi, B.-H., Jeon, M.Y., and Kwon, I.-B., Appl. Sci., 2018, vol. 8, p. 2051. https://doi.org/10.3390/app8112051

    Article  Google Scholar 

  10. Wang, Q., Zhao, K., Badar, M., Yi, X., Lu, P., Buric, M., Mao, Z., and Chen, K.P., Sensors, 2022, vol. 22, p. 18471. https://doi.org/10.1109/JSEN.2022.3197730

    Article  Google Scholar 

  11. Zhang, Z., Fan, X., and He, Z., J. Lightwave Technol., 2019, vol. 37, p. 4590.https://doi.org/10.1109/JLT.2019.2913284

  12. Zhao, S., Cui, J., Wu, Z., Wang, Z., and Tan, J., J. Lightwave Technol., 2021, vol. 39, p. 4101.

    Article  ADS  Google Scholar 

  13. Ponomarev, R.S., Konstantinov, Yu.A., Belokrylov, M.E., Shevtsov, D.I., and Karnaushkin, P.V., Instrum. Exp. Tech., 2022, vol. 65, p. 787. https://doi.org/10.1134/S0020441222050190

    Article  Google Scholar 

  14. Yuksel, K., Wuilpart, M., Moeyaert, V., and Megret, P., Proc. 11th Int. Conference on Transparent Optical Networks, Ponta Delgada, 2009, p. 1. https://doi.org/10.1109/ICTON.2009.5185111

  15. Zhao, S., Cui, J., and Tan, J., Sensors, 2019, vol. 19, p. 3660. https://doi.org/10.3390/s19173660

    Article  ADS  Google Scholar 

  16. Karnaushkin, P.V. and Konstantinov, Yu.A., Instrum. Exp. Tech., 2021, vol. 64, p. 709. https://doi.org/10.1134/S002044122104018

    Article  Google Scholar 

  17. Ponomarev, R., Konstantinov, Y., Belokrylov, M., Lobach, I., and Shevtsov, D., Appl. Sci., 2021, vol. 11, p. 9853. https://doi.org/10.3390/app11219853

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.I. Krivosheev for fabrication of the passive circuit components and fruitful discussions.

Funding

Section 2 was supported by the Russian Foundation for Basic Research and the Perm Territory (project no. 19-48-590018 r_a, no. AAAA-A20-120031690047-9); Sections 3, 4, and 5 were completed within the framework of State Assignment no. AAAA-A19-119042590085-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Belokrylov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

International conference “Optical Reflectometry, Metrology, & Sensing 2023,ˮ Russia, Perm, May 24–26, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belokrylov, M.E., Claude, D., Konstantinov, Y.A. et al. Method for Increasing the Signal-to-Noise Ratio of Rayleigh Back-Scattered Radiation Registered by a Frequency Domain Optical Reflectometer Using Two-Stage Erbium Amplification. Instrum Exp Tech 66, 761–768 (2023). https://doi.org/10.1134/S0020441223050172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223050172

Navigation