Skip to main content
Log in

Manufacturing Quartz Hollow Fibers: Solution to the Problem of Stability in the Drawing of Capillaries

  • LABORATORY TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Solving the problem of the stability of the manufacturing process (“drawing”) of microstructured optical fibers (“holey fibers”) is of paramount importance for determining effective technological modes of production. In this study, the modified capillary drawing model proposed by the authors, which takes into account inertial, viscous, and surface tension forces, as well as all types of heat transfer, was used. Based on the linear theory of stability, the regions of stability of the capillary drawing process were determined. During the study, the influence of the drawing ratio and inertia forces (Reynolds number) on the stability of the process under consideration was evaluated. The existence of optimal parameters of the heating element is shown: temperature distribution over the furnace surface and furnace radius at which the stability of the process of drawing quartz tubes increases significantly (several times).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Pendão, C. and Silva, I., Sensors, 2022, vol. 22, p. 7554. https://doi.org/10.3390/s22197554

    Article  ADS  Google Scholar 

  2. Lin, W., Zhang, C., Li, L., and Liang, S., Proc. 2012 Symposium on Photonics and Optoelectronics, Shanghai, May 21–23, 2012, p. 1.

  3. Krohn, D.A., MacDougall, T., and Mendez, A., Fiber Optic Sensors: Fundamentals and Applications, Bellingham, WA: SPIE Press, 2014.

    Book  Google Scholar 

  4. Xiao, F., Chen, G.S., and Hulsey, J.L., Sensors, 2017, vol. 17, p. 2390. https://doi.org/10.3390/s17102390

    Article  ADS  Google Scholar 

  5. Padma, S., Umesh, S., Pant, S., and Srinivas, T., J. Biomed. Opt., 2016, vol. 21, p. 86012. https://doi.org/10.1117/1.JBO.21.8.086012

    Article  Google Scholar 

  6. Kahandawa, G.C., Epaarachchi, J., Wang, H., and Lau, K., Photonic Sens., 2012, vol. 2, p. 203. https://doi.org/10.1007/s13320-012-0065-4

    Article  ADS  Google Scholar 

  7. Qiao, X., Shao, Z., Bao, W., and Rong, Q., Sensors, 2017, vol. 17, p. 429. https://doi.org/10.3390/s17030429

    Article  ADS  Google Scholar 

  8. Nie, M., Xia, Y.H., and Yang, H.S., Cluster Comput., 2019, vol. 22, p. 8217. https://doi.org/10.1007/s10586-018-1727-9

    Article  Google Scholar 

  9. Wu, T., Liu, G., Fu, S., and Xing, F., Sensors, 2020, vol. 20, p. 4517. https://doi.org/10.3390/s20164517

    Article  ADS  Google Scholar 

  10. Reeves, W., Knight, J., Russell, P., and Roberts, P., Opt. Express, 2002, vol. 10, p. 609. https://doi.org/10.1364/oe.10.000609

    Article  ADS  Google Scholar 

  11. Habib, M.A., Anower, M.S., and Hasan, M.R., Curr. Opt. Photonics, 2017, vol. 1, p. 567. https://doi.org/10.3807/COPP.2017.1.6.567

    Article  Google Scholar 

  12. Troia, B., Paolicelli, A., Leonardis, F., and Passaro, V., in Advances in Photonic Crystals, IntechOpen, 2013, vol. 1, p. 241. https://doi.org/10.5772/53897

  13. Maidi, A.M., Kalam, M.A., and Begum, F., Photonics, 2022, vol. 9, p. 958. https://doi.org/10.3390/photonics9120958

    Article  Google Scholar 

  14. Griffin, S., LCGC North Am., 2002, vol. 20, no. 10, p. 928.

    Google Scholar 

  15. Mcmican, R., Reinf. Plast., 2012, vol. 56, no. 5, p. 9. https://doi.org/10.1016/S0034-3617(12)70110-8

    Article  Google Scholar 

  16. Xue, C., Qin, Y., Fu, H., and Fan, J., Polymers, 2022, vol. 14, p. 3372. https://doi.org/10.3390/polym14163372

    Article  Google Scholar 

  17. Wang, K.Y., Liu, R.X., Zhang, L., Yan, Y.H., Sui, X.Y., Zhou, C.L., and Cheng, Z.Q., IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 678, p. 012076. https://doi.org/10.1088/1757-899X/678/1/012076

  18. Fitt, A.D., Furusawa, K., Monro, T.M., and Please, C.P., J. Lightwave Technol., 2001, vol. 19, p. 1924. https://doi.org/10.1109/50.971686

    Article  ADS  Google Scholar 

  19. Pervadchuk, V., Vladimirova, D., Gordeeva, I., Kuchumov, A.G., and Dektyarev, D., Fibers, 2021, vol. 9, p. 77. https://doi.org/10.3390/fib9120077

    Article  Google Scholar 

  20. Lienard, I.V. and John, H., A Heat Transfer Textbook, Cambridge, MA: Phlogiston Press, 2017.

    Google Scholar 

  21. Fitt, A.D., Furusawa, K., Monro, T.M., Please, C.P., Lienard, I.V., and John, H., J. Lightwave Technol., 2001, vol. 19, p. 1924. https://doi.org/10.1109/50.971686

    Article  ADS  Google Scholar 

  22. Drazin, P.G. and Reid, W.H., Hydrodynamic Stability, Cambridge Univ. Press, 2010. https://doi.org/10.1017/CBO9780511616938

  23. Morgan, R., Math. J., 2015, vol. 16, p. 67.

    Google Scholar 

  24. Rodríguez, R.S., Avalos, G.G., Gallegos, N.B., Ayala-jaimes, G., and Garcia, A.P., Symmetry, 2021, vol. 13, p. 854. https://doi.org/10.3390/sym13050854

    Article  ADS  Google Scholar 

  25. Jung, H.W. and Hyun, J.C., Rheol. Rev., 2006, vol. 2006, p. 131.

    Google Scholar 

  26. Bechert, M. and Scheid, B., Phys. Rev. Fluids, 2017, vol. 2, p. 113905. https://doi.org/10.1103/PhysRevFluids.2.113905

    Article  ADS  Google Scholar 

  27. Van der Hout, R., Eur. J. Appl. Math., 2000, vol. 11, p. 129. https://doi.org/10.1017/S0956792599004118

    Article  MathSciNet  Google Scholar 

  28. Hagen, T. and Langwallner, B., Z. Angew. Math. Mech., 2006, vol. 86, p. 63. https://doi.org/10.1002/zamm.200410225

    Article  Google Scholar 

  29. Vasil’ev, V.N., Dul’nev, G.N., and Naumchik, V.D., J. Eng. Phys. Thermophys., 1988, vol. 55, p. 918.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Derevyankina.

Additional information

International conference “Optical Reflectometry, Metrology, & Sensing 2023,ˮ Russia, Perm, May 24–26, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervadchuk, V.P., Vladimirova, D.B. & Derevyankina, A.L. Manufacturing Quartz Hollow Fibers: Solution to the Problem of Stability in the Drawing of Capillaries. Instrum Exp Tech 66, 881–890 (2023). https://doi.org/10.1134/S0020441223050135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223050135

Navigation