Abstract
Solving the problem of the stability of the manufacturing process (“drawing”) of microstructured optical fibers (“holey fibers”) is of paramount importance for determining effective technological modes of production. In this study, the modified capillary drawing model proposed by the authors, which takes into account inertial, viscous, and surface tension forces, as well as all types of heat transfer, was used. Based on the linear theory of stability, the regions of stability of the capillary drawing process were determined. During the study, the influence of the drawing ratio and inertia forces (Reynolds number) on the stability of the process under consideration was evaluated. The existence of optimal parameters of the heating element is shown: temperature distribution over the furnace surface and furnace radius at which the stability of the process of drawing quartz tubes increases significantly (several times).
Similar content being viewed by others
REFERENCES
Pendão, C. and Silva, I., Sensors, 2022, vol. 22, p. 7554. https://doi.org/10.3390/s22197554
Lin, W., Zhang, C., Li, L., and Liang, S., Proc. 2012 Symposium on Photonics and Optoelectronics, Shanghai, May 21–23, 2012, p. 1.
Krohn, D.A., MacDougall, T., and Mendez, A., Fiber Optic Sensors: Fundamentals and Applications, Bellingham, WA: SPIE Press, 2014.
Xiao, F., Chen, G.S., and Hulsey, J.L., Sensors, 2017, vol. 17, p. 2390. https://doi.org/10.3390/s17102390
Padma, S., Umesh, S., Pant, S., and Srinivas, T., J. Biomed. Opt., 2016, vol. 21, p. 86012. https://doi.org/10.1117/1.JBO.21.8.086012
Kahandawa, G.C., Epaarachchi, J., Wang, H., and Lau, K., Photonic Sens., 2012, vol. 2, p. 203. https://doi.org/10.1007/s13320-012-0065-4
Qiao, X., Shao, Z., Bao, W., and Rong, Q., Sensors, 2017, vol. 17, p. 429. https://doi.org/10.3390/s17030429
Nie, M., Xia, Y.H., and Yang, H.S., Cluster Comput., 2019, vol. 22, p. 8217. https://doi.org/10.1007/s10586-018-1727-9
Wu, T., Liu, G., Fu, S., and Xing, F., Sensors, 2020, vol. 20, p. 4517. https://doi.org/10.3390/s20164517
Reeves, W., Knight, J., Russell, P., and Roberts, P., Opt. Express, 2002, vol. 10, p. 609. https://doi.org/10.1364/oe.10.000609
Habib, M.A., Anower, M.S., and Hasan, M.R., Curr. Opt. Photonics, 2017, vol. 1, p. 567. https://doi.org/10.3807/COPP.2017.1.6.567
Troia, B., Paolicelli, A., Leonardis, F., and Passaro, V., in Advances in Photonic Crystals, IntechOpen, 2013, vol. 1, p. 241. https://doi.org/10.5772/53897
Maidi, A.M., Kalam, M.A., and Begum, F., Photonics, 2022, vol. 9, p. 958. https://doi.org/10.3390/photonics9120958
Griffin, S., LCGC North Am., 2002, vol. 20, no. 10, p. 928.
Mcmican, R., Reinf. Plast., 2012, vol. 56, no. 5, p. 9. https://doi.org/10.1016/S0034-3617(12)70110-8
Xue, C., Qin, Y., Fu, H., and Fan, J., Polymers, 2022, vol. 14, p. 3372. https://doi.org/10.3390/polym14163372
Wang, K.Y., Liu, R.X., Zhang, L., Yan, Y.H., Sui, X.Y., Zhou, C.L., and Cheng, Z.Q., IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 678, p. 012076. https://doi.org/10.1088/1757-899X/678/1/012076
Fitt, A.D., Furusawa, K., Monro, T.M., and Please, C.P., J. Lightwave Technol., 2001, vol. 19, p. 1924. https://doi.org/10.1109/50.971686
Pervadchuk, V., Vladimirova, D., Gordeeva, I., Kuchumov, A.G., and Dektyarev, D., Fibers, 2021, vol. 9, p. 77. https://doi.org/10.3390/fib9120077
Lienard, I.V. and John, H., A Heat Transfer Textbook, Cambridge, MA: Phlogiston Press, 2017.
Fitt, A.D., Furusawa, K., Monro, T.M., Please, C.P., Lienard, I.V., and John, H., J. Lightwave Technol., 2001, vol. 19, p. 1924. https://doi.org/10.1109/50.971686
Drazin, P.G. and Reid, W.H., Hydrodynamic Stability, Cambridge Univ. Press, 2010. https://doi.org/10.1017/CBO9780511616938
Morgan, R., Math. J., 2015, vol. 16, p. 67.
Rodríguez, R.S., Avalos, G.G., Gallegos, N.B., Ayala-jaimes, G., and Garcia, A.P., Symmetry, 2021, vol. 13, p. 854. https://doi.org/10.3390/sym13050854
Jung, H.W. and Hyun, J.C., Rheol. Rev., 2006, vol. 2006, p. 131.
Bechert, M. and Scheid, B., Phys. Rev. Fluids, 2017, vol. 2, p. 113905. https://doi.org/10.1103/PhysRevFluids.2.113905
Van der Hout, R., Eur. J. Appl. Math., 2000, vol. 11, p. 129. https://doi.org/10.1017/S0956792599004118
Hagen, T. and Langwallner, B., Z. Angew. Math. Mech., 2006, vol. 86, p. 63. https://doi.org/10.1002/zamm.200410225
Vasil’ev, V.N., Dul’nev, G.N., and Naumchik, V.D., J. Eng. Phys. Thermophys., 1988, vol. 55, p. 918.
Author information
Authors and Affiliations
Corresponding author
Additional information
International conference “Optical Reflectometry, Metrology, & Sensing 2023,ˮ Russia, Perm, May 24–26, 2023.
Rights and permissions
About this article
Cite this article
Pervadchuk, V.P., Vladimirova, D.B. & Derevyankina, A.L. Manufacturing Quartz Hollow Fibers: Solution to the Problem of Stability in the Drawing of Capillaries. Instrum Exp Tech 66, 881–890 (2023). https://doi.org/10.1134/S0020441223050135
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0020441223050135