Skip to main content
Log in

Active Thermostatting of the Reference Optical Fiber Section Method in a Distributed Fiber-Optical Temperature Sensor

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The influence of temperature fluctuations of the reference section of an optical fiber as part of the instrumental part on the absolute measurement error of a distributed fiber-optical temperature sensor was performed. The design of the reference section with active temperature control with high stability as part of the instrumental part of the sensor is proposed and experimentally investigated. The efficiency of using active temperature control to improve the repeatability of measurements and reduce the measurement error has been experimentally demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Dakin, J.P. and Kahn, D.A., Opt. Quantum Electron., 1977, vol. 9, p. 540.

    Article  ADS  Google Scholar 

  2. Rozzell, T.C., Johnson, C.C., Durney, C.H., Lords, J.L., and Olsen, R.G., J. Microwave Power, 1974, vol. 9, no. 3, p. 241. https://doi.org/10.1080/00222739.1974.11688922

    Article  Google Scholar 

  3. Morey, W.W., Meltz, G., and Glenn, W.H., Proc. SPIE, 1990, vol. 1169, p. 987. https://doi.org/10.1117/12.963022

    Article  Google Scholar 

  4. Brooks, J., Wentworth, R., Youngquist, R., Tur, M., Kim, B., and Shaw, H., J. Lightwave Technol., 1985, vol. 3, no. 5, p. 1062. https://doi.org/10.1109/JLT.1985.1074308

    Article  ADS  Google Scholar 

  5. Hartog, A.H., Leach, A.P., and Gold, M.P., Electron. Lett., 1985, vol. 21, no. 23, p. 1061. https://doi.org/10.1049/el:19850752

    Article  ADS  Google Scholar 

  6. Hartog, A., J. Lightwave Technol., 1983, vol. 1, no. 3, p. 498. https://doi.org/10.1109/JLT.1983.1072146

    Article  ADS  Google Scholar 

  7. Dakin, J.P., Pratt, D.J., Bibby, G.W., and Ross, J.N., Electron. Lett., 1985, vol. 21, no. 13, p. 569. https://doi.org/10.1049/el:19850402

    Article  ADS  Google Scholar 

  8. Culverhouse, D., Farahi, F., and Pannell, C.N., Electron. Lett., 1989, vol. 25, no. 14, p. 913. https://doi.org/10.1049/el:19890612

    Article  ADS  Google Scholar 

  9. Zhirnov, A.A., Stepanov, K.V., Sazonkin, S.G., Choban, T.V., Koshelev, K.I., Chernutsky, A.O., Pnev, A.B., Novikov, A.O., and Yagodnikov, D.A., Sensors, 2021, vol. 21, no. 23, p. 7836. https://doi.org/10.3390/s21237836

    Article  ADS  Google Scholar 

  10. Chernutsky, A.O., Dvoretskiy, D.A., Orekhov, I.O., Sazonkin, S.G., Ososkov, Y.Z., Denisov, L.K., Stepanov, K.V., Zhirnov, A.A., Pnev, A.B., and Karasik, V.E., Proc. 2020 Int. Conference on Laser Optics (ICLO), St. Petersburg, 2020, p. 1. https://doi.org/10.1109/ICLO48556.2020.9285857.

  11. Ososkov, Y.Z., Chernutsky, A.O., Dvoretskiy, D.A., Sazonkin, S.G., Kudelin, I.S., Orekhov, I.O., Pnev, A.B., and Karasik, V.E., Opt. Spectrosc., 2019, vol. 127, p. 664. http://sci-hub.tw/10.1134/S0030400X19100199

    Article  ADS  Google Scholar 

  12. Stepanov, K.V., Zhirnov, A.A., Chernutsky, A.O., Koshelev, K.I., Pnev, A.B., Lopunov, A.I., and Butov, O.V., Sensors, 2020, vol. 20, p. 6431. https://doi.org/10.3390/s20226431

    Article  ADS  Google Scholar 

  13. Nordin, N.D., Abdullah, F., Zan, M.S.D., Abu-Bakar, A.A., Krivosheev, A.I., Barkov, F.L., and Konstantinov, Y.A., Sensors, 2022, vol. 22, no. 7, p. 2677. https://doi.org/10.3390/s22072677

    Article  ADS  Google Scholar 

  14. Hartog, A.H., An Introduction to Distributed Optical Fibre Sensors, CRC Press, 2017. https://doi.org/10.1201/9781315119014

  15. Hausner, M.B., Suárez, F., Glander, K.E., Van de Giesen, N., Selker, J.S., and Tyler, S.W., Sensors, 2011, vol. 11, no. 11, p. 10859. https://doi.org/10.3390/s111110859

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 22-79-00225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Chernutsky.

Additional information

Translated by A. Seferov

International conference “Optical Reflectometry, Metrology, & Sensing 2023,ˮ Russia, Perm, May 24–26, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernutsky, A.O., Khan, R.I., Gritsenko, T.V. et al. Active Thermostatting of the Reference Optical Fiber Section Method in a Distributed Fiber-Optical Temperature Sensor. Instrum Exp Tech 66, 824–831 (2023). https://doi.org/10.1134/S002044122305007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044122305007X

Navigation