Skip to main content
Log in

Planar Michelson Interferometer Using Terahertz Surface Plasmons

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript


The optical scheme and technical characteristics of terahertz planar Michelson interferometer based on surface plasmons are presented. A technique for determination of the complex index of refraction of surface plasmons (\({{\tilde {n}}_{{\text{s}}}} = {{n}_{{\text{s}}}} + {\text{ }}i{{\kappa }_{{\text{s}}}}\)) from interferograms is described. The paper presents the results of test measurements on flat surfaces with gold sputtering coated by ZnS layers 0 to 3 μm thick with application of the high-power coherent radiation from the Novosibirsk free electron laser at the wavelength λ0 = 141 μm. From the measurement results, the value of the effective permittivity of the sputtered gold surface was found, which turned out to be an order of magnitude lower than that of crystalline gold. Analysis of the energy losses in the plasmonic interferometer made it possible to estimate its dynamic range (106–108 in terms of radiation power) required for measurements on samples with different \({{\tilde {n}}_{s}}\). Ways to increase the signal-to-noise ratio via optimization of the elements of the optical scheme and detector have also been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others


  1. Bratman, V.L., Litvak, A.G., and Suvorov, E.V., Usp. Fiz. Nauk, 2011, vol. 181, no. 8, p. 867.

    Article  Google Scholar 

  2. Ghann, W. and Uddin, J., Terahertz Spectroscopy: A Cutting-Edge Technology, Uddin, J., Ed., London: IntechOpen, 2017.

    Google Scholar 

  3. O’Hara, J.F., Withayachumnankul, W., and Al-Naib, I., J. Infrared, Millimeter, Terahertz Waves, 2012, vol. 33, no. 3, p. 245.

    Article  Google Scholar 

  4. Hofmann, T., Herzinger, C.M., Boosalis, A., Tiwald, T.E., Woollam, J.A., and Schube, M., Rev. Sci. Instrum., 2010, vol. 81, p. 023101.

  5. Azarov, I.A., Shvets, V.A., Prokopiev, V.Yu., Dulin, S.A., Rykhlitskii, S.V., Kruchinin, V.N., Choporova, Yu.Yu., Knyazev, B.A., and Kruchinina, M.V., Instrum. Exp. Tech., 2015, vol. 58, no. 3, p. 381.

    Article  Google Scholar 

  6. Naftaly, M. and Dudley, R., Appl. Opt., 2011, vol. 50, no. 9, p. 3201.

    Article  ADS  Google Scholar 

  7. Poverkhnostnye polyaritony. Elektromagnitnye volny na poverkhnostyakh i granitsakh razdela sred (Surface Polaritons. Electromagnetic Waves on Surfaces and Media Boundaries), Agranovich, V.M. and Mills, D.L., Eds., Moscow: Nauka, 1985.

    Google Scholar 

  8. Maier, S.A., PlasmonicsFundamentals and Applications, New York: Springer, 2007.

    Book  Google Scholar 

  9. Nikitin, A.K. and Tishchenko, A.A., Pis’ma Zh. Tekh. Fiz., 1991, vol. 17, no. 11, p. 76.

    Google Scholar 

  10. Huang, Y.H., Ho, H.P., Wu, S.Y., and Kong, S.K., Adv. Opt. Technol., 2012, vol. 2012, p. 471957.

  11. Silin, V.I., Voronov, S.A., Yakovlev, V.A., and Zhizhin, G.N., Int. J. Infrared Millimeter Waves, 1989, vol. 10, no. 1, p. 101.

    Article  ADS  Google Scholar 

  12. Wang, K. and Mittleman, D.M., Phys. Rev. Lett., 2006, vol. 96, p. 157401.

  13. Gao, Y., Xin, Z., Gan, Q., Cheng, X., and Bartoli, F.J., Opt. Express, 2013, vol. 21, no. 5, p. 5859.

    Article  ADS  Google Scholar 

  14. Melentiev, P.N., Kuzin, A.A., Gritchenko, A.S., Kalmykov, A.S., and Balykin, V.I., Opt. Commun., 2017, vol. 382, p. 509.

    Article  ADS  Google Scholar 

  15. Gan, Q.Q., Gao, Y., and Bartoli, F.J., Opt. Express, 2009, vol. 17, no. 23, p. 20747.

    Article  ADS  Google Scholar 

  16. Ming, Y., Wu, Z., Wu, H., Xu, F., and Lu, Y., IEEE Photonics J., 2012, vol. 4, no. 1, p. 491.

    Article  ADS  Google Scholar 

  17. Schlesinger, Z. and Sievers, A.J., Appl. Phys. Lett., 1980, vol. 36, no. 6, p. 409.

    Article  ADS  Google Scholar 

  18. Hanssen, L.M., Riffe, D.M., and Sievers, A.J., Opt. Lett., 1986, vol. 11, no. 12, p. 782.

    Article  ADS  Google Scholar 

  19. Petrov, Yu.E., Alieva, E.V., Zhizhin, G.N., and Yakovlev, V.A., Zh. Tekh. Fiz., 1998, vol. 68, no. 3, p. 64.

    Google Scholar 

  20. Ma, Y., Nguyen-Huu, N., Zhou, J., Maeda, H., Wu, Q., Eldlio, M., Pistora, J., and Cada, M., IEEE J. Sel. Top. Quantum Electron., 2017, vol. 23, no. 4, p. 4601607.

  21. Handbook of Optical Constants of Solids, Palik, E.D., Ed., Academic, 2016, vol. 1.

    Google Scholar 

  22. Pandey, S., Gupta, B., Chanana, A., and Nahata, A., Adv. Phys., 2016, vol. 1, no. 2, p. 176.

    Article  Google Scholar 

  23. Zhizhin, G.N., Nikitin, A.K., Balashov, A.A., and Ryzhova, T.A., RF Patent 2318192, Byull. Izobret., 2008, no. 6.

  24. Bogomolov, G.D., Zhizhin, G.N., Kiryanov, A.P., Nikitin, A.K., and Khitrov, O.V., Bull. Rus. Acad. Sci.: Phys., 2009, vol. 73, no. 4, p. 533.

    Article  Google Scholar 

  25. Nikitin, A.K., Knyazev, B.A., Gerasimov, V.V., and Khasanov, I.Sh., RF Patent 2653590, Byull. Izobret., 2018, no. 14.

  26. Zhizhin, G.N., Kiryanov, A.P., and Nikitin, A.K., Opt. Spectrosc., 2012, vol. 112, no. 4, p. 545.

    Article  ADS  Google Scholar 

  27. Gerasimov, V.V., Knyazev, B.A., Nikitin, A.K., Nikitin, V.V., and Rijova, T.A., Discrete and Continuous Models and Applied Computational Science, 2013, no. 2, p. 191.

  28. Gerasimov, V.V., Knyazev, B.A., and Nikitin, A.K., Quantum Electron., 2017, vol. 47, no. 1, p. 65.

    Article  ADS  Google Scholar 

  29. Gerasimov, V.V., Nikitin, A.K., Lemzyakov, A.G., Azarov, I.A., Milekhin, I.A., Knyazev, B.A., Bezus, E.A., Kadomina, E.A., and Doskolovich, L.L., J. Opt. Soc. Am. B, 2020, vol. 37, no. 5, p. 1461.

    Article  ADS  Google Scholar 

  30. Nikitin, A.K. and Khitrov, O.V., RF Patent 2709600, Byull. Izobret., 2019, no. 35.

  31. Gerasimov, V.V., Nikitin, A.K., Khitrov, O.V., and Lemzyakov, A.G., Proc. 6th Int. Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Chengdu, August 29–September 3, 2021, p. 1.

  32. Shevchenko, O.A., Vinokurov, N.A., Arbuzov, V.S., Chernov, K.N., Davidyuk, I.V., Deichuly, O.I., Dementyev, E.N., Dovzhenko, B.A., Getmanov, Ya.V., Gorbachev, Ya.I., Knyazev, B.A., Kolobanov, E.I., Kondakov, A.A., Kozak, V.R., Kozyrev, E.V., et al., Bull. Rus. Acad. Sci.: Phys., 2019, vol. 83, p. 228.

    Article  Google Scholar 

  33. Stegeman, G.I., Wallis, R.F., and Maradudin, A.A., Opt. Lett., 1983, vol. 8, no. 7, p. 386.

    Article  ADS  Google Scholar 

  34. Kotelnikov, I.A., Gerasimov, V.V., and Knyazev, B.A., Phys. Rev. A, 2013, vol. 87, p. 023828.

  35. Islam, M.S., Nine, J., Sultana, J., Cruz, A.L.S., Dinovitser, A., Ng, B.W., Ebendorff-Heidepriem, H., Losic, D., and Abbott, D., IEEE Access, 2020, vol. 8, p. 97204.

    Article  Google Scholar 

  36. Nazarov, M., Garet, F., Armand, D., Shkurinov, A., and Coutaz, J.-L., C. R. Phys., 2008, vol. 9, p. 232.

    Article  ADS  Google Scholar 

  37. Knyazev, B.A. and Nikitin, A.K., RF Patent 2547164, Byull. Izobret., 2015, no. 10.

  38. Knyazev, B.A., Gerasimov, V.V., Nikitin, A.K., Azarov, I.A., and Choporova, Yu.Yu., J. Opt. Soc. Am. B, 2019, vol. 36, p. 1684.

    Article  ADS  Google Scholar 

  39. Gerasimov, V.V., Knyazev, B.A., Nikitin, A.K., and Nikitin, V.V., Tech. Phys. Lett., 2010, vol. 36, no. 11, p. 1016.

    Article  ADS  Google Scholar 

  40. Zayats, A.V., Smolyaninov, I.I., and Maradudin, A.A., Phys. Rep., 2005, vol. 408, p. 131.

    Article  ADS  Google Scholar 

  41. Gerasimov, V.V., Knyazev, B.A., Lemzyakov, A.G., Nikitin, A.K., and Zhizhin, G.N., J. Opt. Soc. Am. B, 2016, vol. 33, p. 2196.

    Article  ADS  Google Scholar 

  42. Minin, I.V. and Minin, O.V., Vestn. SGUGIT (Sib. Gos. Univ. Geosist. Tekhnol.), 2022, vol. 26, no. 4, p. 160.

    Article  Google Scholar 



  45. Paulish, A.G., Dorozhkin, K.V., Gusachenko, A.V., Morozov, A.O., and Pyrgaeva, S.M., Sbornik trudov konferentsii “Aktual’nye problemy radiofiziki APR 2019” (Proc. Conference “Topical Problems on Radio-Physics APR 2019”), Tomsk, 2019, p. 482.

  46. Zubov, V.A., Metody izmereniya kharakteristik lazernogo izlucheniya (Methods for Measuring Characteristics of Laser Emission), Moscow: Nauka, 1973.

  47. Kubarev, V.V., Kulipanov, G.N., Kolobanov, E.I., Matveenko, A.N., Medvedev, L.E., Ovchar, V.K., Salikova, T.V., Scheglov, M.A., Serednyakov, S.S., and Vinokurov, N.A., Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, vol. 603, p. 25.

    Article  Google Scholar 

  48. Handbook: Physical Data, Grigoryev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

    Google Scholar 

  49. Mathar, R.J., J. Opt. A: Pure Appl. Opt., 2007, vol. 9, p. 470.

    Article  ADS  Google Scholar 

  50. Burke, J.J., Stegeman, G.I., and Tamir, T., Phys. Rev. B, 1986, vol. 33, no. 8, p. 5186.

    Article  ADS  Google Scholar 

  51. Ordal, M.A., Long, L.L., Bell, R.J., Bell, S.E., Bell, R.R., Alexander, R.W., and Ward, C.A., Appl. Opt., 1983, vol. 22, p. 1099.

    Article  ADS  Google Scholar 

  52. Jiu Zhi-Xian, Zuo Du-Luo, Miao Liang, Qi Chun-Chao, and Cheng Zu-Hai, Chin. Phys. Lett., 2010, vol. 27, p. 024211.

  53. Kozlov, G. and Volkov, A., in Topics in Applied Physics, vol. 74: Millimeter and Submillimeter Wave Spectroscopy of Solids, Grüner, G., Ed., Berlin, Heidelberg: Springer, 2007.

    Book  Google Scholar 

  54. Idehara, T., Sabchevski, S.P., Glyavin, M., and Mitsudo, S., Appl. Sci., 2020, vol. 10, p. 980.

    Article  Google Scholar 

  55. Wen, B. and Ban, D., Prog. Quantum Electron., 2021, vol. 80, p. 100363.

  56. Kubarev, V.V., Doctoral Sci. (Phys.-Math.) Dissertation, Novosibirsk: Budker Institute of Nuclear Physics Siberian Branch Russ. Acad. Sci., 2016.

Download references


The work was done at the shared research center SSTRC on the basis of the Novosibirsk FEL at BINP SB RAS.

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. V. Gerasimov.

Ethics declarations

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, V.V., Nikitin, A.K. & Lemzyakov, A.G. Planar Michelson Interferometer Using Terahertz Surface Plasmons. Instrum Exp Tech 66, 423–434 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: