Skip to main content

An Acousto-Optical Summator–Modulator of Laser Radiation

Abstract

The acousto-optic method of summing the power of two lasers of the same type with modulation and intensity control is based on the simultaneous diffraction of two laser beams in one acousto-optic paratellurite crystal on one acoustic wave. For lasers with wavelengths from 400 to 1000 nm, the frequency range of acoustic waves is 30–5 MHz. The method is applicable to both continuous and pulsed lasers. Using the example of the addition of the powers of continuous semiconductor lasers (power 10 W and wavelength 532 nm), it is shown that the total power was 19.2 W.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Magdich, L.N. and Molchanov, V.Ya., Acousto-Optic Devices and Their Applications, New York: Gordon and Breach, 1989.

    Google Scholar 

  2. 2

    Balakshii, V.I., Parygin, V.N., and Chirkov, L.E., Fizicheskie osnovy akustooptiki (Physical Fundamentals for Acousto-Optics), Moscow: Radio i Svyaz’, 1985.

  3. 3

    Korpel, A., Acousto-Optics, New York: Marcel Dekker, 1988.

    Google Scholar 

  4. 4

    Xu, J. and Stroud, R., Acousto-Optic Devices, New York: Wiley, 1992.

    Google Scholar 

  5. 5

    Zadorin, A.S., Dinamika akustoopticheskogo vzaimodeistviya (Dynamic of Acousto-Optic Interaction), Tomsk: Tomsk State Univ., 2004.

  6. 6

    Molchanov, V.Ya., Kitaev, Yu.I., Kolesnikov, A.I., Narver, V.N., Rozenshtein, A.Z., Solodovnikov, N.P., and Shapovalenko, K.G., Teoriya i praktika sovremennoi akustooptiki (Theory and Practice of Modern Acousto-Optics), Moscow: National Univ. of Science and Technology MISiS, 2015.

  7. 7

    Kotov, V.M., Avtometriya, 1992, no. 3, p. 109.

  8. 8

    Antonov, S.N., Gulyaev, Yu.V., and Kotov, V.M., Radiotekh. Electron., 1987, vol. 32, no. 3, p. 623.

    ADS  Google Scholar 

  9. 9

    Akusticheskie kristally. Spravochnik (Acoustical Crystals. Handbook), Shaskol’skaya, M.P., Ed., Moscow: Nauka, 1982.

  10. 10

    Antonov, S.N., Acoust. Phys., 2017, vol. 63, no. 4, p. 410. https://doi.org/10.1134/S1063771017030010

    ADS  Article  Google Scholar 

  11. 11

    Antonov, S.N., Acoust. Phys., 2018, vol. 64, no. 4, p. 432. https://doi.org/10.1134/S1063771018040012

    ADS  Article  Google Scholar 

  12. 12

    Antonov, S.N., Instrum. Exp. Tech., 2019, vol. 62, no. 3, p. 386. https://doi.org/10.1134/S0020441219020155

    Article  Google Scholar 

  13. 13

    Antonov, S.N., Tech. Phys., 2016, vol. 61, no. 1, p. 130. https://doi.org/10.1134/S1063784216010035

    Article  Google Scholar 

Download references

Funding

This work was carried out at the expense of budgetary funding within the framework of the state assignment on the topic 0030-2019-0014.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. N. Antonov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antonov, S.N. An Acousto-Optical Summator–Modulator of Laser Radiation. Instrum Exp Tech 64, 546–548 (2021). https://doi.org/10.1134/S0020441221030155

Download citation