Skip to main content
Log in

Development of a Compact Deuterium–Deuterium Neutron Generator for Prompt Gamma Neutron Activation Analysis

  • NUCLEAR EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A compact deuterium–deuterium neutron generator for prompt gamma neutron activation analysis was developed at Institute of Nuclear Physics and Chemistry. A neutron yield of 3.6 × 108 s–1 was achieved during of the bombardment of a titanium drive-in target by a 6.8 mA deuteron beam at 115 keV. The deuteron beam was generated by a permanent magnet microwave ion source. An 85 h long run with 1.2 × 108 s–1 average neutron yield was performed at 85 keV and 3.7 mA. The operating mode of the neutron generator reached 99.95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Zhu, T.H., Liu, R., Jiang, L., Lu, X.X., Wen, Z.W., Wang, M., and Lin, J.F., At.Energy Sci. Technol., 2008, vol. 42, p. 593. https://doi.org/10.7538/yzk.2008.42.07.0593

    Article  Google Scholar 

  2. Vainionpaa, J.H., Chen, A.X., Piestrup, M.A., Gary, C.K., Jones, G., and Pantell, R.H., Nucl. Instrum. Methods Phys. Res.,Sect. B, 2015, vol. 350, p. 88. https://doi.org/10.1016/j.nimb.2014.12.077

    Article  Google Scholar 

  3. Koltick, D., Kim, Y., McConchie, S., Novikov, I., Belbot, M., and Gardner, G., Nucl. Instrum. Methods Phys. Res.,Sect. B, 2007, vol. 261, p. 277. https://doi.org/10.1016/j.nimb.2007.03.047

    Article  Google Scholar 

  4. Fantidis, J.G., Nicolaou, G.E., and Tsagas, N.F., Nucl. Instrum. Methods Phys. Res.,Sect. A, 2010, vol. 618, p. 331. https://doi.org/10.1016/j.nima.2010.02.107

    Article  Google Scholar 

  5. Reijonen, J., Gicquel, F., Hahto, S.K., King, M., Lou, T.-P., and Leung, K.-N., Appl. Radiat. Isot., 2005, vol. 63, p. 757. https://doi.org/10.1016/j.apradiso.2005.05.024

    Article  Google Scholar 

  6. Vainionpaa, J.H., Harris, J.L., Piestrup, M.A., Gary, C.K., and Williams, D.L., AIP Conf. Proc., 2013, vol. 1525, p. 118. https://doi.org/10.1063/1.4802303

    Article  ADS  Google Scholar 

  7. Izotov, I. and Skalyga, V., AIP Conf. Proc., 2016, vol. 1771, p. 090005. https://doi.org/10.1063/1.4964247

    Article  Google Scholar 

  8. Huang, Z.-W., Wang, J.-R., Wie, Z., Lu, X.-L., Ma, Z.-W., Ran, J.-L., Zhang, Z.-M., Yao, Z.-E., and Zhang, Y., J. Instrum., 2018, vol. 13, p. P01013. https://doi.org/10.1088/1748-0221/13/01/p01013

    Article  Google Scholar 

  9. Adams, R., Bort, L., Zboray, R., and Prasser, H., Appl. Radiat. Isot., 2015, vol. 96, p. 114. https://doi.org/10.1016/j.apradiso.2014.11.017

    Article  Google Scholar 

  10. Das, B.K., Shyam, A., Das, R., and Rao, A.D.P., Instrum. Exp. Tech., 2013, vol. 56, no. 2, p. 130. https://doi.org/10.1134/S0020441213010260

    Article  Google Scholar 

  11. Drosg, M., DROSG-2000, PC Database for 56 Neutron Source Reactions, IAEA-NDS-87, 2000.

  12. Peng, S.X., Xu, R., Zhao, J., Yuan, Z.X., Zhang, M., Song, Z.Z., Yu, J.X., Lu, Y.R., and Guo, Z.Y., Rev. Sci. Instrum., 2008, vol. 79, p. 02A310. https://doi.org/10.1063/1.2812343

  13. Liu, Y.G., Ke, J.L., Zhao, G.Y., Lou, B.C., Hu, Y.H., and Liu, R., Nucl. Sci. Tech., 2018, vol. 29, p. 17. https://doi.org/10.1007/s41365-018-0464-3

    Article  Google Scholar 

  14. Ke, J.L., Liu, M., and Zhou, C.G., Nucl. Instrum. Methods Phys. Res.,Sect. B, 2012, vol. 280, p. 1. https://doi.org/10.1016/j.nimb.2012.02.033

    Article  Google Scholar 

  15. Brown, I.G., The Physics and Technology of Ion Source, Weinheim: Wiley-VCH, 2004.

    Book  Google Scholar 

  16. Liu, Y.G., Liu, M., Ke, J.L., Hu, Y.H., Lou, B.C., Jiang, B., Zhao, G.Y., and Liu, R., Nucl. Tech., 2017, vol. 40, p. 010202. https://doi.org/10.11889/j.0253-3219.2017.hjs.40.010202

    Article  Google Scholar 

  17. Wu, X.Y., Liao, B., Zhang, X., Li, Q., Peng, J.H., Zhang, H.X., and Zhang, X.J., J. Beijing Norm. Univ.(Nat. Sci.), 2014, vol. 50, p. 132. https://doi.org/10.1177/0040517506059708

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

THANKS to professor Shixiang Peng from Peking University for her help in the design of the microwave ion source. This work was supported by a grant from the National Natural Science Foundation of China (no. 11705174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Jian-Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian-Lin, K., Yu-Guo, L., Bai-Li, L. et al. Development of a Compact Deuterium–Deuterium Neutron Generator for Prompt Gamma Neutron Activation Analysis. Instrum Exp Tech 63, 616–620 (2020). https://doi.org/10.1134/S0020441220050036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441220050036

Navigation