Advertisement

Instruments and Experimental Techniques

, Volume 61, Issue 4, pp 556–561 | Cite as

A Fluorimeter on the Basis of a Femtosecond Cr+4: Forsterite Laser

  • Yu. A. Shandarov
  • I. V. Kryukov
  • D. A. Ivanov
  • A. A. Ivanov
  • N. Kh. Petrov
  • M. V. Alfimov
General Experimental Techniques
  • 11 Downloads

Abstract

An apparatus for measuring luminescence lifetimes using the femtosecond up-conversion method is presented. A laser system based on a chromium–forsterite crystal with a lasing wavelength of 1250 nm is used to generate ultrashort pulses. Luminescence is excited in a sample by optical harmonics that are generated in nonlinear optical crystals. The width of the instrument function of the system is 200 fs. Methods for optimizing the signal-to-noise ratio in measurements are discussed. The results of measurements of the fluorescence- decay dynamics and the anisotropy of aqueous solutions of an inclusion complex of the 4-DASPI styrene dye in cucurbit[6]uril on short (5 ps) and long (500 ps) time scales are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lemmetyinen, H., Tkachenko, N.V., Valeur, B., Hotta, J., Ameloot, M., Ernsting, N.P., Gustavsson, T., and Boens, N., Pure Appl. Chem., 2014, vol. 86, no. 12, p. 1969. doi 10.1515/pac-2013-0912CrossRefGoogle Scholar
  2. 2.
    Conyard, J., Addison, K., Heisler, I.A., Cnossen, A., Browne, W.R., Feringa, B.L., and Meech, S.R., Nat. Chem., 2012, vol. 4, p. 547. doi 10.1038/nchem.1343CrossRefGoogle Scholar
  3. 3.
    Xu, J. and Knutson, J.R., Methods Enzymol., 2008, vol. 450, p. 159. doi 10.1016/S0076-6879(08)03408-3CrossRefGoogle Scholar
  4. 4.
    Szemik-Hojniak, A., Deperasinґska, I., Oberda, K., Erez, Y., Huppertc, D., and Nizhnik, Y.P., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 9914. doi 10.1039/C3CP50527HCrossRefGoogle Scholar
  5. 5.
    Yakovlev, V.V., Ivanov, A.A., and Shcheslavskiy, V., Appl. Phys. B: Lasers Opt., 2002, vol. 74, no. 1, Suppl., p. 145. doi 10.1007/s00340-002-0904-xADSCrossRefGoogle Scholar
  6. 6.
    Ivanov, A.A., Alfimov, M.V., and Zheltikov, A.M., Laser Phys., 2000, vol. 10, p. 796. doi 10.1117/12.431561Google Scholar
  7. 7.
    Schanz, R., Kovalenko, S.A., Kharlanov, V., and Ernstinga, N.P., Appl. Phys. Lett., 2001, vol. 79, p. 566. doi 10.1063/1.1387257ADSCrossRefGoogle Scholar
  8. 8.
    Klyshko, D.N. and Masalov, A.V., Usp. Fiz. Nauk, 1995, vol. 165, p. 1249. doi 10.3367/UFNr.0165.199511b.1249CrossRefGoogle Scholar
  9. 9.
    Zernike, F. and Midwinter, J.E., Applied Nonlinear Optics, New York: Wiley, 1973.Google Scholar
  10. 10.
    Lakowicz, J.R., Principles of Fluorescence Spectroscopy, Springer, 2006.CrossRefGoogle Scholar
  11. 11.

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Yu. A. Shandarov
    • 1
  • I. V. Kryukov
    • 1
  • D. A. Ivanov
    • 1
  • A. A. Ivanov
    • 1
  • N. Kh. Petrov
    • 1
    • 2
  • M. V. Alfimov
    • 1
    • 2
  1. 1.Center of Photochemistry, Crystallography and Photonics Federal Research CenterRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia

Personalised recommendations