Instruments and Experimental Techniques

, Volume 61, Issue 2, pp 283–291 | Cite as

Development and Characterization of a white Led-Based Spectrophotometer for UV/VIS Gaseous Pollutants Detection Employing Michelson Interferometer and an Optical Filtering System

  • P. Visconti
  • P. Primiceri
  • R. de Fazio
  • A. Lay-Ekuakille
Physical Instruments for Ecology, Medicine, and Biology


Aim of this paper is the design of an absorption spectrophotometer based on LED technology presenting several advantages such as high luminous efficiency, reliability, long operating duration, low maintenance and low power consumption besides the reduction of analyte temperature variations which occur if Xenon light source is used. An optical filtering system was realized to detect analyte absorption for each wavelength range selected by proper optical filters; also to characterize filtered light beam in terms of its coherence length, thus correlating measured absorption spectrum with light source characteristics, the Michelson interferometer was used. Realized white LED-based spectrophotometer can be used to monitor air quality in hospital rooms or to detect atmospheric pollution deriving from vehicular traffic and different typology of pollutants (e.g., heavy metals deriving by industrial activities). A PC-interfaced control unit acquires and processes raw data provided by sensors (pressure, temperature, humidity, luminosity) and manages the optical filtering system motion by actuating a stepper motor. Whole system operation was tested and obtained results confirm the proper functioning and correct interaction, through PC terminal, between user and control unit.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, Q., Wang, F., Aleck Wang, Z., Yuan, D., Dai, M., Chen, J., Dai, J., and Hoering, K.A., Environ. Sci. Technol., 2013, vol. 47, p. 11139. doi 10.1021/es402421aADSCrossRefGoogle Scholar
  2. 2.
    Lay-Ekuakille, A., Vergallo, P., Morello, R., and De Capua, C., Measurement, 2014, vol. 47, p. 749. doi 10.1016/j.measurement.2013.09.040CrossRefGoogle Scholar
  3. 3.
    Lay-Ekuakille, A., Palamara, I., Caratelli, D., and Morabito, F.C., Rev. Sci. Instrum., 2013, vol. 84, p. 015103-1. doi 10.1063/1.4772576ADSCrossRefGoogle Scholar
  4. 4.
    Lay-Ekuakille, A., Vendramin, G., and Trotta, A., Sens. Actuators, B, 2009, vol. 135, p. 411. doi 10.1016/j.snb.2008.09.041CrossRefGoogle Scholar
  5. 5.
    Laqua, K., Melhuish, W.H., and Zander, M., Pure Appl. Chem., 1988, vol. 60, no. 9, p. 1449. doi 10.1351/pac198860091449CrossRefGoogle Scholar
  6. 6.
    Alippi, C., Camplani, R., Galperti, C., and Roveri, M., IEEE Sens. J., 2011, vol. 11, p. 45. doi 10.1109/JSEN.2010.2051539CrossRefGoogle Scholar
  7. 7.
    Muravyov, S.V., Spiridonova, A.S., Gavrilenko, N.A., Baranov, P.F., and Khudonogova, L.I., Instrum. Exp. Tech., 2016, vol. 59, no. 4, p. 592. doi 10.1134/S0020441216030210CrossRefGoogle Scholar
  8. 8.
    Alukera, N.L., Suzdaltsevaa, J.M., Herrmannc, M., and Dulepovaa, A.C., Instrum. Exp. Tech., 2016, vol. 59, no. 5, p. 733. doi 10.1134/S002044121605002XCrossRefGoogle Scholar
  9. 9.
    Nawrocka, A. and Lamorska, J., “Determination of Food Quality by Using Spectroscopic Methods,” in Advances in Agrophysical Research, Grundas, S. and Stepniewski, A., Eds., Rijeka: InTech, 2013, ch. 14. doi 10.5772/52722Google Scholar
  10. 10.
    Pacquit, A., Lau, K., McLaughlin, H., Frisby, J., Quilty, B., and Diamond, D., Talanta, 2006, vol. 69, p. 515. doi 10.1016/j.talanta.2005.10.046CrossRefGoogle Scholar
  11. 11.
    Walker, J.T., N. Engl. J. Med., 1949, vol. 240, p. 200. doi 10.1056/NEJM194902032400512CrossRefGoogle Scholar
  12. 12.
    Ionel, I. and Popescu, F., in Methods for Online Monitoring of Air Pollution Concentration. Air Quality, Ed. by Ashok Kumar, InTech, 2010. doi 10.5772/9754. Scholar
  13. 13.
    Lepot, M., Torres, A., Hofer, T., Caradot, N., Gruber, G., Aubin, J.B., and Bertrand-Krajewski, J., Water Res., 2016, vol. 101, p. 519. doi 10.1016/j.watres.2016.05.070CrossRefGoogle Scholar
  14. 14.
    Visconti, P., Ferri, R., Pucciarelli, M., and Venere, E., Int. J. Smart Sens. Intell. Syst., 2016, vol. 9, no. 4, p. 1637. SCOPUS 2-s2.0-85005963745Google Scholar
  15. 15.
    Primiceri, P., Visconti, P., Melpignano, A., Vilei, A., and Colleoni, G.M., Int. J. Smart Sens. Intell. Syst., 2016, vol. 9, no. 3, p.1534. SCOPUS 2-s2.0-84992448380Google Scholar
  16. 16.
    Visconti, P., Orlando, C., and Primiceri, P., Proc. IEEE 16th Int. Conf. on Environment and Electrical Engineering, Florence, June 7–10, 2016. doi 10.1109 /EEEIC.2016.7555638Google Scholar
  17. 17.
    Jankovec, M., Galliano, F., Annigoni, E. Yu., Li, H., Sculati-Meillaud, F., Perret-Aebi, L.E., Ballif, C., and Topic, M., IEEE J. Photovoltaics, 2016, vol. 6, p. 1152. doi 10.1109/JPHOTOV.2016.2583779CrossRefGoogle Scholar
  18. 18.
    Lunca, E., Ursache, S., and Vasniuc, A., in Proc. 9th Int. Symp. on Advanced Topics In Electrical Engineering, Bucharest, Romania, May 7–9, 2015, INSPEC Accession Number 15240882. doi 10.1109/ATEE.2015. 7133668Google Scholar
  19. 19.
    Visconti, P., Primiceri, P., Costantini, P., Colangelo, G., and Cavalera, G., Int. J. Smart Sens. Intell. Syst., 2016, vol. 9, no. 3, p. 1220, SCOPUS 2-s2.0-84992450119Google Scholar
  20. 20.
    Chatterjee, K., Mahato, S.N., Chattopadhyay, S., and De, D., Instrum. Exp. Tech., 2017, vol. 60, no. 1, p. 154. doi 10.1134/S0020441217010055CrossRefGoogle Scholar
  21. 21.
    Visconti, P., Primiceri, P., and Cavalera, G., in Proc. IEEE 2016 Workshop on Environmental, Energy and Structural Monitoring Systems (EESMS), Bari, Italy, June 13–14, 2016. doi 10.1109/EESMS.2016. 7504805Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • P. Visconti
    • 1
  • P. Primiceri
    • 1
  • R. de Fazio
    • 1
  • A. Lay-Ekuakille
    • 1
  1. 1.Department of Innovation EngineeringUniversity of SalentoLecceItaly

Personalised recommendations