Instruments and Experimental Techniques

, Volume 61, Issue 2, pp 306–312 | Cite as

A Three-Point Bending Test Machine for Studying the Thermomechanical Properties of Shape Memory Alloys

  • V. S. Kalashnikov
  • V. V. Koledov
  • D. S. Kuchin
  • A. V. Petrov
  • V. G. Shavrov
Laboratory Techniques


An experimental test machine for studying of the thermomechanical properties of shape-memory alloys in the temperature range from −130 to +300°C under mechanical stresses of up to 2000 MPa and the maximum bending deformation of a sample of up to 20% is described. The principle of operation of the test machine is based on three-point bending of a sample at a variable temperature and a constant load. The deflection of the sample is measured by an optical displacement transducer, which determines the high accuracy and reliability of the results. The apparatus was tested using samples of the Ni49.8Ti50.2 shape-memory alloy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ryklina, E.P., Prokoshkin, S.D., and Chernavina, A.A., Materialovedenie, 2012, no. 11, p.23.Google Scholar
  2. 2.
    Otsuka, K. and Ren, X., Prog. Mater. Sci., 2005, vol. 50, p. 511. doi 10.1016/j.pmatsci.2004.10.001CrossRefGoogle Scholar
  3. 3.
    Jani, J.M., Leary, M., Subic, A., and Gibson, M.A., Mater. Des., 2014, vol. 56, p. 1078, doi 10.1016/j.matdes. 2013.11.084CrossRefGoogle Scholar
  4. 4.
    Mazaev, P.V., Koledov, V.V., Shavrov, V.G., Lega, P.V., Mashirov, A.V., Kamantsev, A.P., Kuchin, D.S., Kolesov, D.V., Yaminskii, I.V., Zakharov, D.I., Dikan, V.A., and Irzhak, A.V., J. Alloys Compd., 2014, vol. 586, no. 1, p. S464. doi 10.1134/S1064226916060176Google Scholar
  5. 5.
    Utyuzh, A.N. and Krasnorusskii, V.N., Instrum. Exp. Tech., 2011, vol. 54, no. 6, p.872.CrossRefGoogle Scholar
  6. 6.
    Ivasishin, O.M., Cherepin, V.T., Kolesnik, V.N., and Gumenyak, N.M., Instrum. Exp. Tech., 2010, vol. 53, no. 3, p.457.CrossRefGoogle Scholar
  7. 7.
    Magomedov, M.R.M., Kamilov, I.K., Omarov, Z.M., Ismailov, Sh.M., Khamidov, M.M., and Rasulov, M.M., Prib. Tekh. Eksp., 2007, no. 4, p.165.Google Scholar
  8. 8.
    Amireche, R., Morin, M., and Belkahla, S., J. Alloys Compd., 2012, vol. 516, no. 5, p. 5. doi 10.1016/j.jallcom. 2011.11.154CrossRefGoogle Scholar
  9. 9.
    Jones, N.G. and Dye, D., Intermetallics, 2011, vol. 19, no. 10, p. 1348, doi 10.1016/j.intermet.2011.03.032CrossRefGoogle Scholar
  10. 10.
    Moon, H.-J., Chun, S.-J., Liu, Y., Yang, H., Kim, Y.-W., and Nam, T.-H., J. Alloys Compd., 2013, vol. 577, suppl. 1, no. 15, p. S259. doi 10.1016/j.jallcom.2012. 02.132ADSCrossRefGoogle Scholar
  11. 11.
    Mehrabi, K., Bruncko, M., and Kneissl, A.C., J. Alloys Compd., 2012, vol. 526, no. 15, p. 45. doi 10.1016/j.jallcom. 2012.02.097CrossRefGoogle Scholar
  12. 12.
    Fedotkin, A.A., Medentsov, V.E., and Stolyarov, V.V., Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2012, no. 8, p.47.CrossRefGoogle Scholar
  13. 13.
    Chemisky, Y., Chatzigeorgiou, G., Kumar, P., and Lagoudas, D.C., Mech. Mater., 2014, vol. 68, p. 120. doi 10.1088/j.mechmat.2013.07.020CrossRefGoogle Scholar
  14. 14.
    Wang, X., Kustov, S., Li, K., Schryvers, D., Verlinden, B., and Van Humbeeck, J., Acta Mater., 2015, vol. 82, no. 1, p. 224. doi 10.1016/j.actamat.2014.09.018CrossRefGoogle Scholar
  15. 15.
    Helbert, G., Saint-Sulpice, L., Chirani, S.A., Dieng, L., and Lecompte, T., Calloch, S., and Pilvin, P., Mech. Mater., 2014, vol. 79, p. 85. doi 10.1088/1361-665X/aa5141CrossRefGoogle Scholar
  16. 16.
    Atli, K.C., Franco, B.E., Karaman, I., Gaydosh, D., and Noebe, R.D., Mater. Sci. Eng., A, 2013, vol. 574, no. 1, p. 9. doi 10.1016/j.msea.2013.02.035CrossRefGoogle Scholar
  17. 17.
    Karaca, H.E., Kaya, I., Tobe, H., Basaran, B., Nagasako, M., Kainuma, R., and Chumlyakov, Y., Mater. Sci. Eng., A, 2013, vol. 580, no. 15, p.66.CrossRefGoogle Scholar
  18. 18.
    Kalashnikov, V.S., Koledov, V.V., Petrov, A.V., Gunderov, D.V., Andreev, V.A., Shavrov, V.G., Kuchin, D.V., and Gizatullin, R.M., Zh. Radioelektron., 2016, no. 1. Scholar
  19. 19.
    Stolyarov, V.V., Prokof’ev, E.A., Prokoshkin, S.D., Dobatkin, S.V., Trubitsyna, I.B., Khmelevskaya, I.Yu., Pushin, V.G., and Valiev, R.Z., Phys. Met. Metallogr., 2005, vol. 100, no. 6, p. 608.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. S. Kalashnikov
    • 1
  • V. V. Koledov
    • 1
  • D. S. Kuchin
    • 1
  • A. V. Petrov
    • 1
  • V. G. Shavrov
    • 1
  1. 1.Kotel’nikov Institute of Radio-Engineering and Electronics (IRE)Russian Academy of SciencesMoscowRussia

Personalised recommendations