Instruments and Experimental Techniques

, Volume 61, Issue 2, pp 159–172 | Cite as

Ion-Beam Sources Based on Solid Electrolytes for Aerospace Applications and Ion-Beam Technologies (Review)

  • A. B. Tolstoguzov
  • S. F. Belykh
  • G. P. Gololobov
  • V. S. Gurov
  • S. I. Gusev
  • D. V. Suvorov
  • A. I. Taganov
  • D. J. Fud
  • Z. Ai
  • C. S. Liu


An analytical review of the modern state of the development of ion sources with solid electrolytes (superionic conductors) for the aerospace and ion-beam technologies is presented. The methods for synthesis and properties of solid electrolytes, the formation of mobile ions at the “reservoir–electrolyte” interface, the fast-ion transport in a thin electrolyte film under the action of an external electric field, and the processes of ion emission (evaporation) from the surface of the electrolyte into a vacuum at a temperature below the thermionic-emission threshold and an electric-field strength that is lower than that of field-ion emitters are discussed. The operation modes, the design and manufacturing technology of anion and cation sources are described in detail. Methods for improving the performance and the main fields of application, including electrostatic rocket engines (ion microthrusters), for which a matrix solid-state ion–electron source was designed and patented, are analyzed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R.C. and Gupta, R.K., J. Mater. Sci., 1999, vol. 34, p. 1131. doi 10.1023/A:1004598902146ADSCrossRefGoogle Scholar
  2. 2.
    Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Ionics of Solids), St. Petersburg: S.-Peterb. Gos. Univ., 2000, vol.1.Google Scholar
  3. 3.
    Karamov, F.A., Superionic Conductors, Cambridge: Cambridge International Science, 2008.Google Scholar
  4. 4.
    Tolstoguzov, A.B., Belykh, S.F., Gurov, V.S., Lozovan, A.A., Taganov, A.I., Teodoro, O.M.N., Trubitsyn, A.A., and Chenakin, S.P., Instrum. Exp. Tech., 2015, vol. 58, no. 1, p. 1. doi 10.1134/S002044121501011XCrossRefGoogle Scholar
  5. 5.
    Contract No. 4000113559/15/NL/CBi. Compact Ion-Beam Sources Based on Superionic Solid Electrolytes for Application in Field Emission Electric Propulsion Systems, European Space Agency (ESA), 2014.Google Scholar
  6. 6.
    Tolstogouzov, A., Aguas, H., Ayouchi, R., Belykh, S.F., Fernandes, F., Gololobov, G.P., Moutinho, A.M.C., Schwarz, R., Suvorov, D.V., and Teodoro, O.M.N.D., Vacuum, 2016, vol. 131, p. 252. doi 10.1016/j.vacuum. 2016.07.003ADSCrossRefGoogle Scholar
  7. 7.
    Tolstoguzov, A.B. and Dyagilev, A.A., RF Patent 165683, Izobret., Polezn. Modeli, 2016, no.30.Google Scholar
  8. 8.
    Tolstoguzov, A.B. and Dyagilev, A.A., RF Patent 2618761, Izobret., Polezn. Modeli, 2017, no.14.Google Scholar
  9. 9.
    Eremin, S.M. and Kul’varskaya, B.S., Radiotekh. Elektron., 1972, vol. 16, no. 1, p.145.Google Scholar
  10. 10.
    Pargellis, A.N. and Seidl, M., J. Appl. Phys., 1978, vol. 49, p. 4933. doi 10.1063/1.325529ADSCrossRefGoogle Scholar
  11. 11.
    Sakai, T., Kaimai, A., Otake, T., Yashiro, K., Kawada, T., Mizusaki, J., and Nihioka, M., Solid State Ionics, 2006, vol. 177, p. 1601. doi 10.1016/j.ssi.2006.05.014CrossRefGoogle Scholar
  12. 12.
    Li, J., Hayashi, K., Hirano, M., and Hosono, H., Solid State Ionics, 2009, vol. 180, p. 1113. doi 10.1016/j.ssi. 2009.04.018CrossRefGoogle Scholar
  13. 13.
    Wilbur, P.J., Wilson, M., Hutchings, K., and Williams, J.D., Abstracts of Papers, 29th Int. Electric Propulsion Conf. (IEPC-2005), Princeton, NJ, 2005, p.164.Google Scholar
  14. 14.
    Bradley, J.N. and Greene, P.D., Trans. Faraday Soc., 1966, vol. 62, p. 2069. doi 10.1039/TF9666201859CrossRefGoogle Scholar
  15. 15.
    Owens, B.B. and Argue, G.R., Science, 1967, vol. 157, p. 308. doi 10.1126/science.157.3786.308ADSCrossRefGoogle Scholar
  16. 16.
    Yao, Y.F.Y. and Kummer, J.T., J. Inorg. Nucl. Chem., 1967, vol. 29, p. 2453. doi 10.1016/0022-1902(67)80301-4CrossRefGoogle Scholar
  17. 17.
    Despotuli, A.L. and Nikolaichic, V.I., Solid State Ionics, 1993, vol. 60, p. 275. doi 10.1016/0167-2738(93) 90005-NCrossRefGoogle Scholar
  18. 18.
    Zagorodnev, V.N. and Lichkova, N.V., Izv. Akad. Nauk SSSR, Neorg. Mater., 1983, vol. 19, p. 1031.Google Scholar
  19. 19.
    Newman, D.S., Electrochim. Acta, 1979, vol. 24, p. 789. doi 10.1016/0013-4686(79)80010-9CrossRefGoogle Scholar
  20. 20.
    Chandra, S. and Mohabey, V.K., J. Phys. D: Appl. Phys., 1975, vol. 8, p. 576. doi 10.1088/0022-3727/8/5/018ADSCrossRefGoogle Scholar
  21. 21.
    Ervin, G. and Park, C., US Patent 3701685, 1972.Google Scholar
  22. 22.
    Peng, H., Machida, N., and Shigematsu, T., J. Jap. Soc. Powder Powder Metall., 2002, vol. 49, p. 69. doi 10.2497 /jjspm.49.69CrossRefGoogle Scholar
  23. 23.
    Peng, H., Machida, N., Nishida, S., and Shigematsu, T., J. Non-Cryst. Solids, 2003, vol. 318, p. 112. doi 10.1016/S0022-3093(02)01863-XADSCrossRefGoogle Scholar
  24. 24.
    Despotuli, A.L., Zagorodnev, V.N., Lichkova, N.V., and Minenkova, N.A., Fiz. Tverd. Tela, 1989, vol. 31, no. 9, p.242.Google Scholar
  25. 25.
    Despotuli, A.L., Lichkova, N.V., Minenkova, N.A., and Nosenko, S.V., Elektrokhimiya, 1990, vol. 26, p. 1524.Google Scholar
  26. 26.
    Malugani, J.P., Wasniewski, A., Doreau, M., and Robert, G., Mater. Res. Bull., 1978, vol. 13, p. 427. doi 10.1016/0025-5408(78)90149-6CrossRefGoogle Scholar
  27. 27.
    Mistarelli, P., Tomasi, C., Magistris, A., and Linati, L., Phys. Rev. B., vol. 63, p. 144203. doi 10.1103/Phys-RevB.63.144203Google Scholar
  28. 28.
    Roling, B., Ingram, M.D., Lange, M., and Funke, K., Phys. Rev. B., vol. 56, p. 13619. doi 10.1103/Phys-RevB.56.13619Google Scholar
  29. 29.
    Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Ionics of Solid State), St. Petersburg: S.-Peterb. Gos. Univ., 2010, vol.2.Google Scholar
  30. 30.
    Thangadurai, V. and Weppner, W., Ionics, 2002, vol. 8, p. 360. doi 10.1007/BF02376049CrossRefGoogle Scholar
  31. 31.
    Torimoto, Y., Harano, A., Suda, T., and Sadakata, M., Jpn. J. Appl. Phys., 1997, vol. 36, p. L238. doi 10.1143/JJAP.36.L238ADSCrossRefGoogle Scholar
  32. 32.
    Torimoto, Y., Nishioka, M., and Sadakata, M., J. Catal., 2002, vol. 209, p. 256. doi 10.1006/jcat.2002. 3541CrossRefGoogle Scholar
  33. 33.
    Nishioka, M., Torimoto, Y., Kashiwagi, H., Li, Q., and Sadakata, M., J. Catal., 2003, vol. 215, p. 1. doi 10.1016/S0021-9517(02)00041-6CrossRefGoogle Scholar
  34. 34.
    Nishioka, M., Nanjyo, H., Hamakawa, S., Kobayashi, K., Sato, K., Inoue, T., Mizukami, F., and Sadakata, M., Solid State Ionics, 2006, vol. 177, p. 2235. doi 10.1016/j.ssi.2006.08.007CrossRefGoogle Scholar
  35. 35.
    Sakai, T., Fujiwara, Y., Kaimai, A., Yashiro, K., Matsumoto, H., Nigara, Y., Kawada, T., and Mizusaki, J., J. Alloys Compd., 2006, vols. 408–412, p. 1127. doi 10.1016/j.jallcom.2004.12.125CrossRefGoogle Scholar
  36. 36.
    Williams, J.D., Wilbur, P.J., Farnell, C. C., Farnell, C. C., Wilson, M., and Hutchings, K., AIP Conf. Proc., 2009, vol. 1103, p. 141. doi 10.1063/1.3115488ADSCrossRefGoogle Scholar
  37. 37.
    Khodonenko, V.P. and Khromov, A.V., Vopr. Elektromekh., 2009, vol. 109, p.27.Google Scholar
  38. 38. Scholar
  39. 39.
    Escher, C., Thomann, S., Andreoli, C., Fink, H.-W., Toquant, J., and Pohl, D.W., Appl. Phys. Lett., 2006, vol. 89, p. 053513. doi 10.1063/1.2264092ADSCrossRefGoogle Scholar
  40. 40.
    Escher, C., Latychevskaia, T., Fink, H.-W., and Pohl, D.W., Phys. Rev. Lett., 2006, vol. 97, p. 136601. doi 10.1103/PhysRevLett.97.136601ADSCrossRefGoogle Scholar
  41. 41.
    Pohl, D., Fink, H.-W., Toquant, J., Escher, C., Thomann, S., and Andreoli, C., Int. Patent WO/2006/103524, 2005.Google Scholar
  42. 42.
    Müller, E.W., Panitz, J.A., and McLane, S.B., Rev. Sci. Instrum., 1968, vol. 39, p. 83. doi 10.1063/1.1683116ADSCrossRefGoogle Scholar
  43. 43.
    Kennedy, J.H., Thin Solid Films, 1977, vol. 43, p. 41. doi 10.1016/0040-6090(77)90380-7ADSCrossRefGoogle Scholar
  44. 44.
    Yang, B., Liang, X.F., Guo, H.X., Yin, K.B., Yin, J., and Liu, Z.G., J. Phys. D: Appl. Phys., 2008, vol. 41, p. 115304. doi 10.1088/0022-3727/41/11/115304ADSCrossRefGoogle Scholar
  45. 45.
    Bdikin, I.K., Gracio, J., Ayouchi, R., Schwarz, R., and Kholkin, A.L., Nanotecnology, 2010, vol. 21, p. 235703. doi 10.1088/0957-4484/21/23/235703ADSCrossRefGoogle Scholar
  46. 46.
    Ghumman, C.A.A., Moutinho, A.M.C., Santos, A., Teodoro, O.M.N.D., and Tolstogouzov, A., Appl. Surf. Sci., 2012, vol. 258, p. 2490. doi 10.1016/j.apsusc. 2011.10.079ADSCrossRefGoogle Scholar
  47. 47.
    Gledhill, J.A. and Patterson, A., J. Phys. Chem., 1952, vol. 56, p. 999. doi 10.1021/j150500a018CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. B. Tolstoguzov
    • 1
    • 2
  • S. F. Belykh
    • 3
  • G. P. Gololobov
    • 1
  • V. S. Gurov
    • 1
  • S. I. Gusev
    • 1
  • D. V. Suvorov
    • 1
  • A. I. Taganov
    • 1
  • D. J. Fud
    • 4
  • Z. Ai
    • 4
  • C. S. Liu
    • 4
  1. 1.Ryazan State Radio Engineering UniversityRyazanRussia
  2. 2.Center for Physics and Technological ResearchDept. de Física da Faculdade de Cincias e Tecnologia Universidade Nova de Lisboa (FCT-UNL), Campus de CaparicaCaparicaPortugal
  3. 3.Moscow Institute of AviationNational Research UniversityMoscowRussia
  4. 4.School of Physics and TechnologyWuhan UniversityWuhanChina

Personalised recommendations