Instruments and Experimental Techniques

, Volume 61, Issue 2, pp 277–282 | Cite as

An Automated Measuring System for Current Deep-Level Transient Spectroscopy

General Experimental Techniques

Abstract

A measuring system for current deep-level transient spectroscopy of semiconductor diode structures is described. Its distinguishing feature is the ability to measure several relaxation currents (up to eight current dependences for one temperature scanning) at different regimes of deep-level recharging. The structural features of the system for measuring and analyzing the temperature dependence of the relaxation current in semiconductor structures are described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lang, D.V., J. Appl. Phys. 1974, vol. 45, p. 3023. http://dx.doi.org/doi 10.1063/1.1663719ADSCrossRefGoogle Scholar
  2. 2.
    Berman, L.S. and Lebedev, A.A., Emkostnaya spektroskopiya glubokikh tsentrov v poluprovodnikakh (Capacitive Spectroscopy of Deep Centers in Semiconductors), Leningrad: Nauka, 1981.Google Scholar
  3. 3.
    Denisov, A.A., Laktyushkin, V.N., and Sadof’ev, Yu.G., Obz. Elektron. Tekh., Ser. 7, 1985, no.15.Google Scholar
  4. 4.
    Kuznetsov, N.I., Fiz. Tekh. Poluprovodn. (St. Petersburg), 1993, vol. 27, no. 10, p. 1674.Google Scholar
  5. 5.
    Borsuk, J.A. and Swanson, R.M., IEEE Trans. Electron Devices, 1980, vol. 27, no. 12, p. 2217. doi 10.1109/TED. 1980.20255ADSCrossRefGoogle Scholar
  6. 6.
    Istratov, A.A., Rev. Sci. Instrum., 1997, vol. 68, p. 3861. doi 10.1063/1.1148038ADSCrossRefGoogle Scholar
  7. 7.
    Istratov, A.A., J. Appl. Phys., 1997, vol. 82, p. 1063. doi 10.1063/1.366269CrossRefGoogle Scholar
  8. 8.
    Sandeep, K., Sugam, K., Katharria, Y.S., Safvan, C.P., and Kanjilal, D., Rev. Sci. Instrum., 2008, vol. 79, no. 5, p. 056103. doi 10.1063/1.2919173ADSCrossRefGoogle Scholar
  9. 9.
    Sze, S.M., Physics of Semiconductor Devices, New York: Wiley, 1969.Google Scholar
  10. 10.
    Astrom, K.J. and Hagglund, T., PID Controllers: Theory, Design and Tuning, Durham: Instrument Society of America, 1995.Google Scholar
  11. 11.
    Essick, J., Hands-On Introduction to LabVIEW for Scientists and Engineers, New York: Oxford Univ. Press, 2012.Google Scholar
  12. 12.
    Ermachikhin, A.V. and Litvinov, V.G., Inf. Tekhnol., 2014, no. 3, p.25.Google Scholar
  13. 13.
    Zhao, M., Huang, J.X., Wong, M.H., Tang, Y.M., and Ong, C.W., Rev. Sci. Instrum., 2011, vol. 82, p. 105001. doi 10.1063/1.3648132ADSCrossRefGoogle Scholar
  14. 14.
    Lauwaert, J., Van Gheluwe, J., and Clauws, P., Rev. Sci. Instrum., 2008, vol. 79, no. 9, p. 093902. doi 10.1063/1.2977550ADSCrossRefGoogle Scholar
  15. 15.
    Kulikovskii, K.L. and Kuper, V.Ya., Metody i sredstva izmerenii (Measurement Methods and Instruments), Moscow: Energoatomizdat, 1986.Google Scholar
  16. 16.
    Zaidel’, A.N., Oshibki izmerenii fizicheskikh velichin (Errors in Measuring Physical Quantities), Leningrad: Nauka, 1974.Google Scholar
  17. 17.
    Krain, R., Beljakova, S., Herlufsen, S., Krieger, M., and Schmidt, J., Energy Procedia, 2013, vol. 38, p. 101. doi 10.1016/j.egypro.2013.07.255CrossRefGoogle Scholar
  18. 18.
    Bezryadin, N.N., Kotov, G.I., Kadantsev, A.V., Vasil’eva, L.V., and Vlasov, Yu.N., Instrum. Exp. Tech., 2010, vol. 53, no. 3, p.430.CrossRefGoogle Scholar
  19. 19.
    Mchedlidze, T., Nacke, M., Hieckmann, E., and Weber, J., J. Appl. Phys., 2014, vol. 115, no. 1, p. 012006. doi 10.1063/1.4837997ADSCrossRefGoogle Scholar
  20. 20.
    Morimoto, J., Kida, T., Miki, Y., and Miyakawa, T., Appl. Phys. A, 1986, vol. 39, no. 3, p.197.ADSCrossRefGoogle Scholar
  21. 21.
    Engstrom, O. and Grimmeiss, H.G., J. Appl. Phys., 1975, vol. 46, p. 831. http://dx.doi.org/. doi 10.1063/1.321653ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Ryazan State Radio Engineering UniversityRyazanRussia

Personalised recommendations