Advertisement

Instruments and Experimental Techniques

, Volume 61, Issue 2, pp 239–259 | Cite as

Features of the Application of the Magnetic-probe Method for Diagnostics of High-temperature Plasma

  • K. N. Mitrofanov
  • V. I. Krauz
  • E. V. Grabovski
  • V. V. Myalton
  • M. Paduch
  • A. N. Gritsuk
General Experimental Techniques
  • 21 Downloads

Abstract

Some aspects of the applicability of the magnetic-probe technique in high-power pulsed discharges are analyzed. The influence of an electron beam and an intense X-ray yield of (~1 TW/cm2), which result from the compression of high-current plasma in the interelectrode gap of a Z-pinch discharge, on the correctness of measurements using magnetic-field probes was studied. We considered the use of multilayer shells as a method for protecting the sensing element of a magnetic probe. The results of experimental testing of probes of a new design in experiments with wire assemblies on the Angara-5-1 facility at discharge currents of up to 4 MA are presented. Experiments on the Angara-5-1, PF-3, and PF-1000 high-power electrophysical facilities show the effect of the shape and material of the probe shell on the perturbation of plasma that flows around a probe and, as a consequence, on the accuracy of the magnetic-field measurements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruzzone, H. and Grondona, D., Plasma Phys. Control. Fusion, 1997, vol. 39, no. 9, p. 1315. doi 10.1088/0741-3335/39/9/004ADSCrossRefGoogle Scholar
  2. 2.
    Bruzzone, H. and Martinez, J.F., Plasma Sources Sci. Technol., 2001, vol. 10, no. 3, p. 471. doi 10.1088/0963-0252/10/3/312ADSCrossRefGoogle Scholar
  3. 3.
    Bruzzone, H., Moreno, C., and Kelly, H., Meas. Sci. Technol., 1991, vol. 2, no. 12, p. 1195. doi 10.1088/0957-0233/2/12/015ADSCrossRefGoogle Scholar
  4. 4.
    Grabovskii, E.V., Zukakishvili, G.G., Mitrofanov, K.N., Oleinik, G.M., Samokhin, A.A., and Smirnov, V.P., Preprint of GNC RF TRINITI, 2002, CNIIATOMIFORM, no. 0091A, p. 40. http://www.twirpx.com/file /843831/Google Scholar
  5. 5.
    Glazyrin, I.V., Grabovskii, E.V., Zukakishvili, G.G., Karpeev, A.V., Mitrofanov, K.N., Oleinik, G.M., and Samokhin, A.A., Probl. Atom. Sci. Technol., Ser. Thermonucl. Fusion, 2009, no. 2, p.67.CrossRefGoogle Scholar
  6. 6.
    Al’bikov, Z.A., Velikhov, E.P., Veretennikov, A.I., Glukhikh, V.A., Grabovskii, E.V., Gryaznov, G.M., Gusev, O.A., Zhemchuzhnikov, G.N., Zaitsev, V.I., Zolotovskii, O.A., Istomin, Yu.A., Kozlov, O.V., Krasheninnikov, I.S., Kurochkin, S.S., Latmanizova, G.M., et al., At. Energ., 1990, vol. 68, no. 1, p.26.Google Scholar
  7. 7.
    Kurtmulaev, R.Kh., Pilsky, V.I., and Semenov, V.N., Zh. Tekh. Fiz., 1970, vol. 40, no. 5, p. 1044.Google Scholar
  8. 8.
    Bhuyan, H., Mohanty, S.R., Neog, N.K., Bujarbarua, S., and Rout, R.K., Meas. Sci. Technol., 2003, vol. 14, no. 10, p. 1769. doi 10.1088/0957-0233/14/10/305ADSCrossRefGoogle Scholar
  9. 9.
    Plasma Diagnostics, Lokhte-Holtgreven, W., Ed., Kiel Univers., Amsterdam: North-Holland, 1968.Google Scholar
  10. 10.
    Mohammadi, M.A., Sobhanian, S., Ghomeishi, M., Ghareshabani, E., Moslehi-fard, M., Lee, S., and Rawat, R.S., J. Fusion Energy, 2009, vol. 28, no. 4, p. 371. doi 10.1007/s10894-009-9205-2ADSCrossRefGoogle Scholar
  11. 11.
    Zakaullah, M., Ahmad, Imtiaz., Murtaza, G., and Beg, M.M., Fusion Eng. Des., 1997, vol. 36, no. 4, p. 437. doi 10.1016/S0920-3796(97)00072-0CrossRefGoogle Scholar
  12. 12.
    Gurey, A., Nikulin, V., Polukhin, S., and Volobuev, I., Probl. Atom. Sci. Technol.(PAST), Ser. Plasma Phys., 2009, vol. 15, no. 1, p.98.Google Scholar
  13. 13.
    Bakhtin, V.P., Skvortsov, Yu.V., and Umrikhin, N.M., Plasma Dev. Oper., 1992, vol. 2, no. 2, p. 141. doi 10.1080/10519999208240676CrossRefGoogle Scholar
  14. 14.
    Krauz, V.I., Mitrofanov, K.N., Myalton, V.V., Khautiev, E.Yu., Mokeev, A.N., Vinogradov, V.P., Vinogradova, Yu.V., Grabovsky, E.V., and Zukakishvili, G.G., http://epsppd.epfl.ch/Warsaw/pdf/P1_018.pdfGoogle Scholar
  15. 15.
    Krauz, V.I., Mitrofanov, K.N., Myalton, V.V., Grabovski, E.V., Koidan, V.S., Vinogradov, V.P., Vinogradova, Yu.V., and Zukakishvili, G.G., IEEE Trans. on Plasma Sci., 2010, vol. 38, no. 2, p. 92. doi 10.1109/TPS.2009.200036916ADSCrossRefGoogle Scholar
  16. 16.
    Krauz, V.I., Mitrofanov, K.N., Myalton, V.V., Vinogradov, V.P., Vinogradova, Yu.V., Grabovskii, E.V., Zukakishvili, G.G., Koidan, V.S., and Mokeev, A.N., Plasma Phys. Rep., 2010, vol. 36, no. 11, p. 937. doi 10.1134/S1063780X10110036ADSCrossRefGoogle Scholar
  17. 17.
    Krauz, V.I., Mitrofanov, K.N., Myalton, V.V., Vinogradov, V.P., Vinogradova, Yu.V., Grabovskii, E.V., and Koidan, V.S., Plasma Phys. Rep., 2011, vol. 37, no. 9, p. 742. doi 10.1134/S1063780X11080058ADSCrossRefGoogle Scholar
  18. 18.
    Krauz, V., Mitrofanov, K., Scholz, M., Paduch, M., Karpinski, L., Zielinska, E., and Kubes, P., Plasma Phys. Contr. Fusion, 2012, vol. 54, no. 2, p. 025010. doi 10.1088/0741-3335/54/2/025010ADSCrossRefGoogle Scholar
  19. 19.
    Gribov, A.N., Aleksandrov, V.V., Grabovskiy, E.V., Gritsuk, A.N., Medovshikov, S.F., Mitrofanov, K.N., and Oleinik, G.M., IEEE Trans. on Plasma Sci., 2009, vol. 37, no. 10, part 1, p. 1981. doi 10.1109/TPS.2009. 2018554ADSCrossRefGoogle Scholar
  20. 20.
    Aleksandrov, V.V., Grabovskii, E.V., Mitrofanov, K.N., Oleinik, G.M., Smirnov, V.P., Sasorov, P.V., and Frolov, I.N., Plasma Phys. Rep., 2004, vol. 30, no. 7, p. 615. doi 10.1134/1.1778432CrossRefGoogle Scholar
  21. 21.
    Alexandrov, V.V., Fortov, V.E., Frolov, I.N., Grabovskii, E.V., Krasuk, I.K., Lomonosov, I.V., Mitrofanov, K.N., Pashinin, P.P., Semenov, A.Yu., Smirnov, V.P., Oleinik, G.M., Porofeev, I.Yu., Vovchenko, V.I., and Zukakishvili, G.G., Proc. 13th Int. Conf. on High-Power Particle Beams (BEAMS 2000), Nagaoka Univ. of Technol., Japan, 2000, vol. 1, p.142.Google Scholar
  22. 22.
    Aleksandrov, V.V., Grabovski, E.V., Gribov, A.N., Gritsuk, A.N., Medovshchikov, S.F., Mitrofanov, K.N., and Oleinik, G.M., Plasma Phys. Rep., 2009, vol. 35, no. 2, p.161.CrossRefGoogle Scholar
  23. 23.
    Fizicheskie velichiny: Spravochnik (Physical Quantities: a Handbook), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.Google Scholar
  24. 24.
    Petrov, D.P., Filippov, N.V., Filippova, T.I., and Khrabrov, V.A., Fizika plazmy i problemy upravlyaemykh termoyadernykh reaktsii (Plasma Physics and Problems of Controlled Fusion Reactions), Leontovich, M.A., Ed., Moscow: AN SSSR, 1958, vol. 4, p.170.Google Scholar
  25. 25.
    Filippov, N.V., Filippova, T.I., and Vinogradov, V.P., Nucl. Fusion Suppl., 1962, part 2, p.577.Google Scholar
  26. 26.
    Mather, J.W., Phys. Fluids, 1965, vol. 8, p. 366. doi 10.1063/1.1761231ADSCrossRefGoogle Scholar
  27. 27.
    Scholz, M., Karpinski, L., Krauz, V.I., Kubes, P., Paduch, M., and Sadowski, M.J., Nukleonika, 2012, vol. 57, no. 2, p.183.Google Scholar
  28. 28.
    Zielinska, E., Paduch, M., and Scholz, M., Contrib. Plasma Phys., 2011, vol. 51, nos. 2–3, p. 279. doi 101002 /ctpp.201000047ADSCrossRefGoogle Scholar
  29. 29.
    Mitrofanov, K.N., Krauz, V.I., Kubesh, P., Scholz, M., Padukh, M., and Zelinska, E., Plasma Phys. Rep., 2014, vol. 40, no. 8, p. 623. doi 10.1134/S1063780X14070071ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • K. N. Mitrofanov
    • 1
  • V. I. Krauz
    • 2
  • E. V. Grabovski
    • 1
  • V. V. Myalton
    • 2
  • M. Paduch
    • 3
  • A. N. Gritsuk
    • 1
  1. 1.State Research Center of the Russian FederationTroitsk Institute for Innovation and Fusion ResearchTroitsk, MoscowRussia
  2. 2.Kurchatov Institute National Research CenterMoscowRussia
  3. 3.Institute of Plasma Physics and Laser MicrofusionWarsawPoland

Personalised recommendations