Skip to main content

Application of Hilbert-Huang Decomposition to Reduce Noise and Characterize for NMR FID Signal of Proton Precession Magnetometer

Abstract

The parameters in a nuclear magnetic resonance free induction decay (FID) signal contain information that is useful in magnetic field measurement, magnetic resonance sounding and other related applications. A real time sampled FID signal is well modeled as a finite mixture of exponential sequences plus noise. We propose to use the Hilbert-Huang transform (HHT) for noise reduction and characterization, where the generalized Hilbert-Huang represents a way to decompose a signal into so-called intrinsic mode function (IMF) along with a trend, and obtain instantaneous frequency data. First, acquiring the actual untuned FID signal by a developed prototype of proton magnetometer, and then the empirical mode decomposition is performed to decompose the noise and original FID. Finally, the HHT is applied to the obtained IMFs to extract the Hilbert energy spectrum of the signal on the frequency axis. By theory analysis and the testing of an actual FID signal, the results show that, compared with general noise reduction methods such as auto correlation and singular value decomposition, combined with the proposed method can further suppress the interfered signals effectively, and can obtain different components of FID signal, which can be used to identify the magnetic anomaly, the existence of groundwater etc. This is a very important property since it can be exploited to separate the FID signal from noise and to estimate exponential sequence parameters of FID signal.

This is a preview of subscription content, access via your institution.

References

  1. Dong, H.B., Liu, H., Ge, J., Yuan, Z.W., and Zhao, Z.Z., IEEE Trans. Instrum. Meas., 2016, vol. 65, p. 898. doi 10.1109/TIM.20162516299

    Article  Google Scholar 

  2. Winslow, R.M., Johnson, C.L., Anderson, B.J., Korth, H., Slavin, J.A., Purucker, M.E., and Solomon, S.C., Geophys. Res. Lett., 2012, vol. 39, p. 10. doi 10.1029/2012GL051472

    Article  Google Scholar 

  3. Li, T., Feng, L.B., Duan, Q.M., Lin, J., Yi, X.F., Jiang, C.D., and Li, S.Y., IEEE Trans. Instrum. Meas., 2015, vol. 64, p. 278. doi 10.1109/TIM.2014.2338693

    Article  Google Scholar 

  4. Choi, S., Kim, C., Park, C., and Kim, H., Proc. Amer. Geophys. Union Fall Meeting, San Francisco, California, 2013, vol. 1, p. 1087.

    Google Scholar 

  5. Sapunov, V., Rasson, J., Denisov, A., Saveliev, D., Kiselev, S., Denisova, O., Podmogov, Y., and Khomutov, S., Earth Planet Sp., 2006, vol. 58, p. 711. doi 10.1186/BF03351972

    Article  ADS  Google Scholar 

  6. Khomutov, S., Sapunov, V., Denisov, A., Savelyev, D., and Babakhanov, I., E3S Web of Conferences, Kamchatka, Russia, 2016, vol. 11, p. 00007. doi 10.1051/e3sconf/20161100007

    Article  Google Scholar 

  7. Wang, H.L., Dong, H.B., Zhou, X.X., Xiao, X., and Li, S.Q., J. Inf. Comput. Sci., 2012, vol. 9, p. 3753.

    Google Scholar 

  8. Lu, Y.H., Joshi, S., and Morris, J.M., IEEE Trans. Biomed. Eng., 1997, vol. 44, p. 512. doi 10.1109/10.581949

    Article  ADS  Google Scholar 

  9. Zygarlicki, J. and Mroczka, J., Metrol. Meas. Syst., 2014, vol. 21, p. 521. doi 10.2478/mms-2014-0044

    Article  Google Scholar 

  10. Wang, H.L., Dong, H.B., He, L.H., and Meng, Q.X., J. Convergence Inf. Technol., 2012, vol. 7, p. 169. doi 10.4156/jcit.vol7.issue16.20

    Google Scholar 

  11. Liu, H., Dong, H.B., Ge, J., Bai, B.J., Yuan, Z.W., and Zhao, Z.Z., Meas. Sci. Technol., 2016, vol. 27, p. 105006. doi 10.1088/0957-0233/27/10/105006

    Article  ADS  Google Scholar 

  12. Denisov, A.Y., Sapunov, V. A., and Rubinstein, B., Meas. Sci. Technol., 2014, vol. 25, p. 055103. doi 10.1088/0957-0233/25/5/055103

    Article  ADS  Google Scholar 

  13. Liu, H., Dong, H.B., Liu, Z., Ge, J., Bai, B.J., and Zhang, C., J. Instrum., 2017, vol. 12, p. P07019. doi 10.1088/1748-0221/12/07/P07019

    Article  Google Scholar 

  14. Nakao, T., Furukawa, T., Suematsu, T., Utsumi, H., and Kubota, H., IEEE Int. Symp. Signal Process. Inf. Technol., Chiba, Japan, 2014, p. 000067. doi 10.1109/ISSPIT.2014.7300565

    Google Scholar 

  15. Zhang, P., Wang, H.J., Li, L., and Wang, P., Electron. Lett., 2014, vol. 50, p. 1026. doi 10.1049/el.2013.3525

    Article  Google Scholar 

  16. Buajarern, J., Phuaknoi, P., Ranusawud, M., and Tonmeanwai, A., Int. Conf. Electr. Eng./Electron., Comput., Telecommun. Inf. Technol., Krabi, Thailand, 2013, p. 1. doi 10.1109/ECTICon.2013.6559470

    Google Scholar 

  17. Nakao, T., Furukawa, T., Suematsu, T., Utsumi, H., and Kubota, H., Int. Symp. Intell. Signal Process. Commun. Syst., Sarawak, Malaysia, 2014, p. 165. doi 10.1109 /ISPACS.2014.7024445

    Google Scholar 

  18. Overhauser, A.W., Phys. Rev., 1953, vol. 92, p. 411. doi 10.1103/PhysRev.92.411

    Article  ADS  Google Scholar 

  19. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., and Liu, H.H., Proc. R. Soc. Lond., 1998, vol. 454, p. 903.

    Article  ADS  Google Scholar 

  20. Ismail, D.K.B., Lazure, P., and Puillat, I., Oceans MTS/IEEE Monterey, Monterey, United States, 2016, p. 1. doi 10.1109/OCEANS.2016.7761460

    Google Scholar 

  21. Barnhart, B.L., ProQuest Dissertations Publishing, Iowa: University of Iowa, 2011.

    Google Scholar 

  22. Beresik, R., Proc. Int. Conf. New Trends Signal Process., Demanovska Dolina, Slovakia, 2016, p. 1. doi 10.1109/NTSP.2016.7747776

    Google Scholar 

  23. Zhang, S., He, J.L., Chen, S.D., Wang, J.N., Guo, X., and Li, H.Y., J. Jilin Univ., Inf. Sci. Ed., 2015, vol. 33, p. 409.

    Google Scholar 

  24. Zikmund, A., Janosek, M., Ulvr, M., and Kupec, J., IEEE Trans. Instrum. Meas., 2015, vol. 64, p. 1242. doi 10.1109/TIM.2015.2395531

    Article  Google Scholar 

  25. Chen, S.D., Guo, S.X., Wang, H.F., He, M., Liu, X.Y., Qiu, Y., Zhang, S., Yuan, Z.W., Zhang, H.Y., Fang, D., and Zhu, J., Sensors, 2017, vol. 17, p. 169. doi 10.3390/s17010169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haobin Dong.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Dong, H., Liu, Z. et al. Application of Hilbert-Huang Decomposition to Reduce Noise and Characterize for NMR FID Signal of Proton Precession Magnetometer. Instrum Exp Tech 61, 55–64 (2018). https://doi.org/10.1134/S0020441218010256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441218010256