Abstract
The parameters in a nuclear magnetic resonance free induction decay (FID) signal contain information that is useful in magnetic field measurement, magnetic resonance sounding and other related applications. A real time sampled FID signal is well modeled as a finite mixture of exponential sequences plus noise. We propose to use the Hilbert-Huang transform (HHT) for noise reduction and characterization, where the generalized Hilbert-Huang represents a way to decompose a signal into so-called intrinsic mode function (IMF) along with a trend, and obtain instantaneous frequency data. First, acquiring the actual untuned FID signal by a developed prototype of proton magnetometer, and then the empirical mode decomposition is performed to decompose the noise and original FID. Finally, the HHT is applied to the obtained IMFs to extract the Hilbert energy spectrum of the signal on the frequency axis. By theory analysis and the testing of an actual FID signal, the results show that, compared with general noise reduction methods such as auto correlation and singular value decomposition, combined with the proposed method can further suppress the interfered signals effectively, and can obtain different components of FID signal, which can be used to identify the magnetic anomaly, the existence of groundwater etc. This is a very important property since it can be exploited to separate the FID signal from noise and to estimate exponential sequence parameters of FID signal.
This is a preview of subscription content, access via your institution.
References
Dong, H.B., Liu, H., Ge, J., Yuan, Z.W., and Zhao, Z.Z., IEEE Trans. Instrum. Meas., 2016, vol. 65, p. 898. doi 10.1109/TIM.20162516299
Winslow, R.M., Johnson, C.L., Anderson, B.J., Korth, H., Slavin, J.A., Purucker, M.E., and Solomon, S.C., Geophys. Res. Lett., 2012, vol. 39, p. 10. doi 10.1029/2012GL051472
Li, T., Feng, L.B., Duan, Q.M., Lin, J., Yi, X.F., Jiang, C.D., and Li, S.Y., IEEE Trans. Instrum. Meas., 2015, vol. 64, p. 278. doi 10.1109/TIM.2014.2338693
Choi, S., Kim, C., Park, C., and Kim, H., Proc. Amer. Geophys. Union Fall Meeting, San Francisco, California, 2013, vol. 1, p. 1087.
Sapunov, V., Rasson, J., Denisov, A., Saveliev, D., Kiselev, S., Denisova, O., Podmogov, Y., and Khomutov, S., Earth Planet Sp., 2006, vol. 58, p. 711. doi 10.1186/BF03351972
Khomutov, S., Sapunov, V., Denisov, A., Savelyev, D., and Babakhanov, I., E3S Web of Conferences, Kamchatka, Russia, 2016, vol. 11, p. 00007. doi 10.1051/e3sconf/20161100007
Wang, H.L., Dong, H.B., Zhou, X.X., Xiao, X., and Li, S.Q., J. Inf. Comput. Sci., 2012, vol. 9, p. 3753.
Lu, Y.H., Joshi, S., and Morris, J.M., IEEE Trans. Biomed. Eng., 1997, vol. 44, p. 512. doi 10.1109/10.581949
Zygarlicki, J. and Mroczka, J., Metrol. Meas. Syst., 2014, vol. 21, p. 521. doi 10.2478/mms-2014-0044
Wang, H.L., Dong, H.B., He, L.H., and Meng, Q.X., J. Convergence Inf. Technol., 2012, vol. 7, p. 169. doi 10.4156/jcit.vol7.issue16.20
Liu, H., Dong, H.B., Ge, J., Bai, B.J., Yuan, Z.W., and Zhao, Z.Z., Meas. Sci. Technol., 2016, vol. 27, p. 105006. doi 10.1088/0957-0233/27/10/105006
Denisov, A.Y., Sapunov, V. A., and Rubinstein, B., Meas. Sci. Technol., 2014, vol. 25, p. 055103. doi 10.1088/0957-0233/25/5/055103
Liu, H., Dong, H.B., Liu, Z., Ge, J., Bai, B.J., and Zhang, C., J. Instrum., 2017, vol. 12, p. P07019. doi 10.1088/1748-0221/12/07/P07019
Nakao, T., Furukawa, T., Suematsu, T., Utsumi, H., and Kubota, H., IEEE Int. Symp. Signal Process. Inf. Technol., Chiba, Japan, 2014, p. 000067. doi 10.1109/ISSPIT.2014.7300565
Zhang, P., Wang, H.J., Li, L., and Wang, P., Electron. Lett., 2014, vol. 50, p. 1026. doi 10.1049/el.2013.3525
Buajarern, J., Phuaknoi, P., Ranusawud, M., and Tonmeanwai, A., Int. Conf. Electr. Eng./Electron., Comput., Telecommun. Inf. Technol., Krabi, Thailand, 2013, p. 1. doi 10.1109/ECTICon.2013.6559470
Nakao, T., Furukawa, T., Suematsu, T., Utsumi, H., and Kubota, H., Int. Symp. Intell. Signal Process. Commun. Syst., Sarawak, Malaysia, 2014, p. 165. doi 10.1109 /ISPACS.2014.7024445
Overhauser, A.W., Phys. Rev., 1953, vol. 92, p. 411. doi 10.1103/PhysRev.92.411
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., and Liu, H.H., Proc. R. Soc. Lond., 1998, vol. 454, p. 903.
Ismail, D.K.B., Lazure, P., and Puillat, I., Oceans MTS/IEEE Monterey, Monterey, United States, 2016, p. 1. doi 10.1109/OCEANS.2016.7761460
Barnhart, B.L., ProQuest Dissertations Publishing, Iowa: University of Iowa, 2011.
Beresik, R., Proc. Int. Conf. New Trends Signal Process., Demanovska Dolina, Slovakia, 2016, p. 1. doi 10.1109/NTSP.2016.7747776
Zhang, S., He, J.L., Chen, S.D., Wang, J.N., Guo, X., and Li, H.Y., J. Jilin Univ., Inf. Sci. Ed., 2015, vol. 33, p. 409.
Zikmund, A., Janosek, M., Ulvr, M., and Kupec, J., IEEE Trans. Instrum. Meas., 2015, vol. 64, p. 1242. doi 10.1109/TIM.2015.2395531
Chen, S.D., Guo, S.X., Wang, H.F., He, M., Liu, X.Y., Qiu, Y., Zhang, S., Yuan, Z.W., Zhang, H.Y., Fang, D., and Zhu, J., Sensors, 2017, vol. 17, p. 169. doi 10.3390/s17010169
Author information
Authors and Affiliations
Corresponding author
Additional information
The article is published in the original.
Rights and permissions
About this article
Cite this article
Liu, H., Dong, H., Liu, Z. et al. Application of Hilbert-Huang Decomposition to Reduce Noise and Characterize for NMR FID Signal of Proton Precession Magnetometer. Instrum Exp Tech 61, 55–64 (2018). https://doi.org/10.1134/S0020441218010256
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0020441218010256