Instruments and Experimental Techniques

, Volume 60, Issue 6, pp 795–799 | Cite as

A high speed photon counter system for microwave mercury ion frequency standard

Application of Computers in Experiments


This report describes a high speed photon counter system for microwave mercury ion frequency standard based on a field programmable gate array (FPGA). A high speed comparator is chosen to convert analog signal to digital pulse. A circuit with low-voltage differential signaling (LVDS) receiver in FPGA is used to capture the rising edges of the pulses. In our experiment, the clock of the Altera FPGA EP4CE10E22C8N is 80 MHz which is easy for logic design, and the de-serialization factor of the LVDS receiver is 8, the measured minimum pulse width that can be correctly captured is about 1.67 ns. As a compact and low-cost module, the photon counter system is used for the microwave mercury ion frequency standard.


  1. 1.
    Tjoelker, R.L., Prestage, J.D., Dick, G.J., and Maleki, L., Proc. 1993 IEEE Int. Frequency Control Symp., 1993, p. 132.CrossRefGoogle Scholar
  2. 2.
    Burt, E.A., Diener, W.A., and Tjoelker, R. L., IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2008, vol. 55, no. 12, p. 2586. doi 10.1109/TUFFC.2008.975CrossRefGoogle Scholar
  3. 3.
    Tjoelker, R.L., Burt, E.A., Chung, S., Hamell, R.L., Prestage, J.D., Tucker, B., Cash, P., and Lutwak, R., Proc. 43rd Annual Precise Time and Time Interval Systems and Applications Meeting, Long Beach, California, 2011, p. 293.Google Scholar
  4. 4.
    Burt, E.A. and Tjoelker, R.L., Proc. 39th Annual Precise Time and Time Interval Meeting, Long Beach, California, 2007, p. 309.Google Scholar
  5. 5.
    Burt, E.A., Lin, Y., Tucker, B., Hamell, R., and Tjoelker, R.L., IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2016, vol. 63, no. 7, p. 1013. doi 10.1109/ TUFFC.2016.2572701CrossRefGoogle Scholar
  6. 6.
    She, L., Wang, W.M., Bai, L., Sun, H.Y., Zhu, X.W., Li, J.M., and Gao K.L., Chin. Phys. Lett., 2008, vol. 25, no. 5, p. 1653.ADSCrossRefGoogle Scholar
  7. 7.
    He, Y.H., She, L., Chen, Y.H., Yang, Y.N., Liu, H., and Li, J.M., Chin. Phys. Lett., 2012, vol. 29, no. 12, p. 123201. doi 10.1088/0256-307X/29/12/123201ADSCrossRefGoogle Scholar
  8. 8.
    Liu, H., Yang, Y.N., He, Y.H., Li, H.X., Yang, Z.H., Chen, Y.H., She, L., and Li, J.M., Proc. China Satellite Navigation Conf. (CSNC), 2013, p. 335. doi 10.1007/978 -3-642-37407-4_30Google Scholar
  9. 9.
    Liu, H., Yang, Y.N., He, Y.H., Li, H.X., Chen, Y.H., She, L., and Li, J.M., Chin. Phys. Lett., 2014, vol. 31, no. 6, p. 063201. doi 10.1088/0256-307X/31/6/063201ADSCrossRefGoogle Scholar
  10. 10.
    Yang, Y.N., Liu, H., He, Y.H., Yang, Z.H., Wang, M., Chen, Y.H., She, L., and Li J.M., Chin Phys. B, 2014, vol. 23, no. 9, p. 093702. doi 10.1088/1674-1056/23/9/ 093702ADSCrossRefGoogle Scholar
  11. 11.
    Fisk, P.T.H., Rep. Prog. Phys., 1997, vol. 60, no. 8, p. 761.ADSCrossRefGoogle Scholar
  12. 12.
    Acremann, Y., Chembrolu, V., Strachan, J.P., Tyliszczak, T., and Stohr, J., Rev. Sci. Instrum., 2007, vol. 78, no. 1, p. 014702. doi 10.1063/1.2428274ADSCrossRefGoogle Scholar
  13. 13.
    Pooser, R.C., Earl, D.D., Evans, P.G., Williams, B., Schaake, J., and Humble, T.S., J. Modern Optics, 2012, vol. 59, no. 17, p. 1. doi 10.1080/09500340.2012.706325MathSciNetCrossRefGoogle Scholar
  14. 14.
    Analog Devices, ADCMP562. http://www.analog. com/media/en/technical-documentation/datasheets/ ADCMP561_562.pdfGoogle Scholar
  15. 15.
    Altera, EP4CE10E22C8N. content/dam/alterawww/global/en_US/pdfs/literature/ hb/cyclone-iv/cyiv-53001.pdfGoogle Scholar
  16. 16.
    Texas Instruments, SN65LVDS20. http://www.ti. com/lit/ds/symlink/sn65lvds20.pdfGoogle Scholar
  17. 17.
    Analog Devices, AD5754. media/en/technicaldocumentation/datasheets/ AD5724_5734_5754.pdfGoogle Scholar
  18. 18.
    MaximIntegrated, Max3232. http://datasheets.max Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • Yihe Chen
    • 1
    • 2
  • Man Wang
    • 1
    • 2
  • Lei She
    • 1
  • Hao Liu
    • 1
  • Jiaomei Li
    • 1
  1. 1.Key Laboratory of Atomic Frequency Standards (KLAFS), Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanPeople’s Republic of China
  2. 2.University of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations