Instruments and Experimental Techniques

, Volume 61, Issue 1, pp 9–12 | Cite as

Energy Broadening Model for BGO Array Crystal from 0.059 to 1.332 MeV

  • Mojtaba Askari
  • Ali Taheri
  • Mohammad Taghan Sasanpour
Nuclear Experimental Technique


The energy resolution and energy broadening parameters are of great importance as far as scintillator detector is concerned. At present, BGO crystal due to its high density, high yield of photoelectric absorption, availability and cost is used in particle physics and medical imaging system especially in positron emission tomography (PET). The purpose of this study is to calculate the Gaussian energy broadening parameters of a 10 × 10 BGO array in order to use it in simulation for analysis of its spectral response in the presence of gamma rays in a wide range of energies. The Gaussian energy broadening parameters were extracted from the experimental spectrum to use them as the input parameters in MCNP4c code. The simulated response of the detector employing these parameters showed a good agreement with the experimental data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szczęśniak, T., Kapusta, M., Moszyński, M., Grodzicka, M., Szawłowski, M., Wolski, D., Baszak, J., and Zhang, N., IEEE Trans. Nucl. Sci., 2013, vol. 60, nos. 1–3, p. 1533. doi 10.1109/TNS.2013.2251002ADSCrossRefGoogle Scholar
  2. 2.
    Casey, M.E. and Nutt, R., IEEE Trans. Nucl. Sci., 1986, vol. 33, no. 1, p. 460.ADSCrossRefGoogle Scholar
  3. 3.
    Gervino, G. and Monticone, E., J. Sensors Actuators A: Phys., 1994, vol. 42, nos. 1–3, p. 487.CrossRefGoogle Scholar
  4. 4.
    Ramirez, R.A., Wai-Hoi Wong, Soonseok Kim, Baghaei, H., Hongdi, Li, Yu Wang, Yuxuan Zhang, Shitao Liu, and Jiguo Liu., IEEE Nucl. Sci. Symp. Conf. Rec., 2005, vol. 5, p. 2835. doi 10.1109/NSSMIC.2005. 1596923Google Scholar
  5. 5.
    Weber, S., Christ, D., Kurzeja, M., Engels, R., Kemmerling, G., and Halling, H., IEEE Trans. Nucl. Sci., 2003, vol. 50, nos. 2–5, p. 1370.ADSCrossRefGoogle Scholar
  6. 6.
    Salgado, C.M., Brandão, L.E.B., Schirru, R., Pereira, C.M.N.A., and Conti, C.C., Progress in Nuclear Energy, 2012, vol. 59, p. 19. doi 10.1016/j.pnucene. 2012.03.006CrossRefGoogle Scholar
  7. 7.
    Moszyński, M., Radiation Measur., 2010, vol. 45, nos. 3–6, p. 372, doi 10.1016/j.radmeas.2009.10.012ADSCrossRefGoogle Scholar
  8. 8.
    Taheri, A., Lehdarboni, M.A., and Gholipour, R., J. Instrum., 2016, vol. 11, no. 5, p. P05020. doi 10.1088/1748-0221/11/05/P05020CrossRefGoogle Scholar
  9. 9.
    2000 MCNP—A General Monte Carlo N-particle Transport Code, Briesmeister, J.F., Ed., Los Alamos National Laboratory Report LA-13703-M, 2000, ver. 4C.Google Scholar
  10. 10.
    Knoll, G.E., Radiation Detection and Measurement, New York: Wiley, 2000.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Mojtaba Askari
    • 1
  • Ali Taheri
    • 1
  • Mohammad Taghan Sasanpour
    • 1
  1. 1.Nuclear Science and Technology Research InstituteTehranIran

Personalised recommendations