A data-acquisition and control system for spectral-domain optical coherence tomography with a speed of 91 912 A-scans/s based on a USB 3.0 interface

Abstract

We describe a system of optical spectrum registration at the output of an interferometer with controlled phase shifts for an experimental device intended for visualizing the internal structure of an optically turbid specimen, using the method of spectral domain optical coherence tomography. A device for spectral domain optical coherence tomography based on a common-path optical scheme with a USB 3.0 interface for inputting data into a computer has been developed. An imaging speed of 91 912 A-scans/s has been attained. At the achieved speed, a series of live experiments were carried out to visualize the internal structure of skin tissues from a finger and front segments of an eye.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., and Fujimoto, J.G., Science, 1991, vol. 254, no. 5035, p. 1178.

    ADS  Article  Google Scholar 

  2. 2.

    Gelikonov, V.M., Gelikonov, G.V., Ksenofontov, S.Yu., Terpelov, D.A., and Shilyagin, P.A., Instrum. Exp. Tech., 2010, vol. 53, no. 3, p. 443.

    Article  Google Scholar 

  3. 3.

    Fercher, A.F., Hitzenberger, C.K., Kamp, G., and Elzaiat, S.Y., Optics Commun., 1995, vol. 117, no. 1, p. 43.

    ADS  Article  Google Scholar 

  4. 4.

    Optical Coherence Tomography: Technology and Applications, Drexler, W. and Fujimoto, J.G., Eds., Berlin: Springer-Verlag, 2008.

  5. 5.

    Gelikonov, V.M., Gelikonov, G.V., Terpelov, D.A., and Shilyagin, P.A., Instrum. Exp. Tech., 2012, vol. 55, no. 3, p. 392.

    Article  Google Scholar 

  6. 6.

    Wojtkowski, M., Leitgeb, R., Kowalczyk, A., Bajraszewski, T., and Fercher, A.F., J. Biomedical Optics, 2002, vol. 7, no. 3, p. 457.

    ADS  Article  Google Scholar 

  7. 7.

    Nassif, N., Cense, B., Park, B.H., Yun, S.H., Chen, T.C., Bouma, B.E., Tearney, G.J., and de Boer, J.F., Optics Lett., 2004, vol. 29, no. 5, p. 480.

    ADS  Article  Google Scholar 

  8. 8.

    Bradu, A. and Podoleanu, A.G., Biomedical Optics Express, 2014, vol. 5, no. 4, p. 1233.

    Article  Google Scholar 

  9. 9.

    Matveev, L.A., Zaitsev, V.Y., Gelikonov, G.V., Matveev, A.L., Moiseev, A.A., Ksenofontov, S.Y., Gelikonov, V.M., Sirotkina, M.A., Gladkova, N.D., Demidov, V., and Vitkin, A., Optics Lett., 2015, vol. 40, no. 7, p. 1472.

    ADS  Article  Google Scholar 

  10. 10.

    Nassif, N.A., Cense, B., Park, B.H., Pierce, M.C., Yun, S.H., Bouma, B.E., Tearney, G.J., Chen, T.C., and de Boer, J.F., Optics Express, 2004, vol. 12, no. 3, p. 367.

    ADS  Article  Google Scholar 

  11. 11.

    Gelikonov, V.M., Gelikonov, G.V., Terpelov, D.A., Shabanov, D.V., and Shilyagin, P.A., Quantum Electr., 2012, vol. 42, no. 5, p. 390.

    ADS  Article  Google Scholar 

  12. 12.

    Shilyagin, P.A., Gelikonov, G.V., Gelikonov, V.M., Moiseev, A.A., and Terpelov, D.A., Quantum Electr., 2014, vol. 44, no. 7, p. 664.

    ADS  Article  Google Scholar 

  13. 13.

    Gelikonov, V.M., Kasatkina, I.V., and Shilyagin, P.A., Radiophys. Quant. Electr., 2009, vol. 52, no. 11, p. 810.

    Article  Google Scholar 

  14. 14.

    Gelikonov, V.M., Gelikonov, G.V., Kasatkina, I.V., Terpelov, D.A., and Shilyagin, P.A., Opt. Spectrosc., 2009, vol. 106, no. 6, p. 895.

    ADS  Article  Google Scholar 

  15. 15.

    Gelikonov, V.M., Gelikonov, G.V., and Shilyagin, P.A., Opt. Spectrosc., 2009, vol. 106, no. 3, p. 459.

    ADS  Article  Google Scholar 

  16. 16.

    Gelikonov, V.M., Gelikonov, G.V., and Shilyagin, P.A., Bull. Russ. Acad. Sci.: Phys., 2008, vol. 72, no. 1, p. 93.

    Google Scholar 

  17. 17.

    Bershtein, I.L., Zh. Tekh. Fiz., 1941, vol. 11, no. 4, p. 302.

    Google Scholar 

  18. 18.

    Andronova, I.A. and Bershtein, I.L., Radiophys. Quant. Electr., 1989, vol. 32, no. 4, p. 321.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. A. Terpelov.

Additional information

Original Russian Text © D.A. Terpelov, S.Yu. Ksenofontov, G.V. Gelikonov, V.M. Gelikonov, P.A. Shilyagin, 2017, published in Pribory i Tekhnika Eksperimenta, 2017, No. 6, pp. 94–100.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Terpelov, D.A., Ksenofontov, S.Y., Gelikonov, G.V. et al. A data-acquisition and control system for spectral-domain optical coherence tomography with a speed of 91 912 A-scans/s based on a USB 3.0 interface. Instrum Exp Tech 60, 868–874 (2017). https://doi.org/10.1134/S0020441217060112

Download citation