Advertisement

Instruments and Experimental Techniques

, Volume 60, Issue 5, pp 695–700 | Cite as

A fiber-optic-link-based analog-signal transmission system for the diagnostics of nanosecond processes

  • V. I. Bogomolov
  • Yu. V. Dmitriev
  • N. G. Ignatiev
  • K. E. Korotkov
  • P. S. Krapiva
  • I. N. Moskalenko
  • V. A. Moskvichev
  • S. S. Piskov
Electronics and Radio Engineering
  • 22 Downloads

Abstract

The design and results of studies of a fiber-optic-link-based transmission system for transmitting analog signals of nanosecond duration using an external modulation of radiation are presented. Experimental studies that were performed at the Dukhov All-Russia Research Institute of Automatics demonstrated a method for determining the transmission function of an intensity modulator, which is based on the Mach–Zehnder interferometer, simultaneously with the signal transmission. The dynamic range of the system with one intensity modulator is ~70 when recording a single-shot process. The dynamic range of the transmission system with two modulators that form two information channels exceeds 200 with a bandwidth that exceeds 4 GHz and a signal-to-noise ratio of at least 5 for the minimum recorded signal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bel’kov, S.A., Garanin, S.G., Zhidkov, N.V., Kochemasov, G.G., and Sukharev, S.A., in Proc. 37th Int. (Zvenigorod) Conf. on Plasma Physics and Thermonuclear Synthesis Devices, 2010. http://www.fpl.gpi.ru /Zvenigorod/XXXVII/R/ru/QG-Bel’kov.docGoogle Scholar
  2. 2.
    Veretennikov, A.I., Gorbachev, V.M., and Predein, B.A., Metody issledovaniya inpul’snykh izluchenii (Methods of Pulse Radiation Study), Moscow: Energoatomizdat, 1985.Google Scholar
  3. 3.
    Veretennikov, A.I. and Danilenko, K.N., Sredstva diagnostiki odnokratnogo impul’snogo izlucheniya. Sbornik trudov NIIIT (Diagnostics Means of Single-Pulse Radiation. Collection of SRIIT Papers), Moscow: IzdAT, 1999.Google Scholar
  4. 4.
    Ignatiev, N.G., Orlov, I.E., and Ergashev, D.E., Instrum. Exp. Tech., 2016, vol. 59, no. 6, p. 789. doi 10.7878/S0032816216060173CrossRefGoogle Scholar
  5. 5.
    Malone, R.M., Herrmann, H.W., Stoeffl, W., Mack, J.M., and Young, C.S., Rev. Sci. Instrum., 2008, vol. 79, no. 10, p. 10E532. doi 10.1063/1.2969281CrossRefGoogle Scholar
  6. 6.
    Cox, C.H., III. Analog Optical Links. Theory and Practice, New York: Cambridge University Press, 2004.CrossRefMATHGoogle Scholar
  7. 7.
    Donaldson, W.R., Zhao, C., Ji, L., Roides, R.G., Miller, K., and Beeman, B., Rev. Sci. Instrum., 2012, vol. 83, no. 10, p. 10D726. doi 10.1063/1.4742013CrossRefGoogle Scholar
  8. 8.
    Beeman, B., MacPhee, A.G., Kimbrough, J.R., Lacaille, G.A., Barrios, M.A., Emig, J., Hunter, J.R., Miller, E.K., and Donaldson, W.R., in Proc. of SPIE: Target Diagnostics Phys. Eng. for Inertial Confinement Fusion, Bell, P. and Grim, G.P., Eds., Sess. 8505-07, San Diego, California, 2012. doi 10.1117/12.931436Google Scholar
  9. 9.
    Caldwell, S.E., Han, S.S., Joseph, J.R., Petersen, T.L., and Young, C.S., Rev. Sci. Instrum., 1997, vol. 68, no. 1, p. 603. doi 10.1063/1.1147664ADSCrossRefGoogle Scholar
  10. 10.
    Malone, R.M., Herrmann, H.W., Stoeffl, W., Mack, J.M., and Young, C.S., Rev. Sci. Instrum., 2008, vol. 79, no. 10, p. 10E532. doi 10.1063/1.2969281CrossRefGoogle Scholar
  11. 11.
    McEvoy, A.M., Herrmann, H.W., Horsfield, C.J., Young, C.S., Miller, E.K., Mack, J.M., Kim, Y., Stoeffl, W., Rubery, M., Evans, S., Sedillo, T., and Ali, Z.A., Rev. Sci. Instrum., 2010, vol. 81, no. 10, p. 10D322. doi 10.1063/1.3485083CrossRefGoogle Scholar
  12. 12.
    Miller, E.K., Abbott, R.Q., McKenna, I., Macrum, G., Baker, D., Tran, V., Rodriguez, E., Kaufman, M.I., Tibbits, A., Silbernagel, C.T., Waltman, T.B., Herrmann, H.W., Kim, Y.H., Mack, J.M., Young, C.S., et al., Rev. Sci. Instrum., 2012, vol. 83, no. 10, p. 10D719. doi 10.1063/1.4733310CrossRefGoogle Scholar
  13. 13.
    Lowry, M., Lancaster, G., Peterson, R.T., McWright, G., Nelson, D., and Kidd, B., in Proc. SPIE. Optoelectronic Materials, Devices, Packaging, and Interconnects II, 1988, vol. 994, p. 205.ADSCrossRefGoogle Scholar
  14. 14.
    Ji, L., A Novel Electro-Optic Measurement System using Multiple Wavelengths. Submitted in Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy. University of Rochester. Rochester, New York, 2011. http://www.ofuturescholar.com//paperpage?docid=574429Google Scholar
  15. 15.
    http://www.photonicsinc.com/modulator_bias_controller.htmlGoogle Scholar
  16. 16.
    Korotkov, K.E., Ignatiev, N.G., Krapiva, P.S., Moskalenko, I.N., and Piskov, S.S., in Proc. Int. Conf. 18th Khariton Scientific Readings. Problems of High Density Energy Physics, Sarov: Russ. Feder. Sci. Center–All-Russ. Sci. Res. Inst. Exper. Phys., 2016, p. 38.Google Scholar
  17. 17.
    Donaldson, W.R., Marciante, J.R., and Roides, R.G., IEEE J. Quant. Electron., 2010, vol. 46, no. 2, p. 191.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • V. I. Bogomolov
    • 1
  • Yu. V. Dmitriev
    • 1
  • N. G. Ignatiev
    • 1
  • K. E. Korotkov
    • 1
  • P. S. Krapiva
    • 1
  • I. N. Moskalenko
    • 1
  • V. A. Moskvichev
    • 1
  • S. S. Piskov
    • 1
  1. 1.Dukhov All-Russia Research Institute of AutomaticsMoscowRussia

Personalised recommendations