Instruments and Experimental Techniques

, Volume 60, Issue 5, pp 748–751 | Cite as

A gas-discharge plasma focuser

  • N. L. Kazanskiy
  • V. A. Kolpakov
  • S. V. Krichevskiy
  • N. A. Ivliev
  • M. A. Markushin
Laboratory Techniques

Abstract

A device is proposed for the formation of a gas-discharge plasma stream with a sinusoidal distribution of the charged-particle density over the stream cross section, which is achieved by using wavy shapes of the anode and cathode surfaces that are placed coaxially relative to each other at the distance λe < h < 3λe, where λe is the mean free path of an electron in the gas-discharge plasma stream. The anode is a stainless steel grid with mesh dimensions of 1 × 1 mm. The aluminum cathode is 120 mm in diameter and 50-mm thick. The device provides a discharge current of up to 0.6 А at a controlled voltage at the electrodes in the range of 0.21–0.7 kV. In this case, plasma streams propagate to a distance of up to 50λe beyond the limits of the electrodes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Putrya, M.G., Plazmennye metody formirovanoya trekhmernykh struktur UBIS (Plasma Methods for the Formation of Three-Dimensional Structures of Ultralarge-Scale Integrated Circuits), Moscow: MIET, 2005.Google Scholar
  2. 2.
    Metody kompyuternoi optiki (Computer Optics Methods), Soifer, V.A., Ed., Moscow: Fizmatlit, 2003.Google Scholar
  3. 3.
    Diffractive Nanophotonics, Soifer, V.A., Ed., London: Taylor, 2014.Google Scholar
  4. 4.
    Jackman, R.J., Wilbur, J.L., and Whitesides, G.M., Science, 1995, vol. 269, no. 5224, p. 664.ADSCrossRefGoogle Scholar
  5. 5.
    Rogers, J.A., Jackman, R.J., and Whitesides, G.M., Adv. Mater., 1997, vol. 9, no. 6, p. 475. doi 10.1002/adma.19970090603CrossRefGoogle Scholar
  6. 6.
    Petruczok, C.D. and Gleason, K.K., Adv. Mater., 2012, vol. 24, no. 48, p. 6445. doi 10.1002/adma.201201975CrossRefGoogle Scholar
  7. 7.
    Greisukh, G.I., Bobrov, S.T., and Stepanov, S.A., Optics of Diffractive and Gradient-Index Elements and Systems, Bellingham, WA: SPIE Press, 1997.Google Scholar
  8. 8.
    Kolpakov, V.A., Kolpakov, A.I., and Krichevskiy, S.V., Instrum. Exp. Tech., 2014, vol. 57, no. 2, p. 147. doi 10.1134/S0020441214020183CrossRefGoogle Scholar
  9. 9.
    Kolpakov, V.A., Krichevskiy, S.V., and Markushin M.A., Instrum. Exp. Tech., 2015, vol. 58, no. 5, p. 683. doi doi 10.1134/S0020441215040193CrossRefGoogle Scholar
  10. 10.
    Wagner, I.V., Bolgov, E.I., Grakun, V.F., Gokhweld, V.L., and Kudlai, V.A., Tech. Phys. Russ. J. Appl. Phys., 1974, vol. 19, no. 8, p. 1042.Google Scholar
  11. 11.
    Baranov, I.A., Martynenko, Yu.V., Tsepelevich, S.O., and Yavlinskii, Yu.N., Phys. Usp., 1988, vol. 31, no. 11, p. 1015.ADSCrossRefGoogle Scholar
  12. 12.
    Korolev, M.A., Tekhnologiya, konstrukrsii i metody modelirovaniya kremnievykh integral’nykh mikroslhem. Ch. 1. Tekhnologicheskie protsessy izgotovleniya kremnievykh integral’nykh mikroslhem i ikh modelirovanie (Technology, Constructions, and Methods of Simulation of Silicon Integrated Microcircuits. Part 1. Technological Processes of Production of Silicon Integrated Microcircuits and Their Simulation), Moscow: BINOM, 2015.Google Scholar
  13. 13.
    Soifer, V.A., Kazanskiy, N.L., Kolpakov, V.A., and Kolpakob, A.I., RF Patent 2339191 Byull. Izobret., 2008, no.32.Google Scholar
  14. 14.
    Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Moscow: Nauka, 1992.Google Scholar
  15. 15.
    Kazanskiy, N.L. and Kolpakov, V.A., Study of formation mechanisms of low-temperature plasma by gas discharge of the high-voltage type, in Kompyuternaya optika (Computer Optics), no. 25, pp. 112–116, 2003.Google Scholar
  16. 16.
    Kazanskiy, N.L. and Kolpakov, V.A., Formirovanie opticheskogo mikroreliefa vo vneelektrodnoi plazme vysokovol’tnogo gazovogo razryada (Formation of an Optical Microrelief in Extraelectrode High-Voltage Gas-Discharge Plasma), Moscow: Radio i Svyaz’, 2009.Google Scholar
  17. 17.
    Kolpakov, V.A., Krichevskiy, S.V., and Markushin, M.A., Instrum. Exp. Tech., 2015, vol. 58, no. 5, p. 653. doi 10.1134/S002044121504020XCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • N. L. Kazanskiy
    • 1
  • V. A. Kolpakov
    • 1
  • S. V. Krichevskiy
    • 1
  • N. A. Ivliev
    • 1
  • M. A. Markushin
    • 1
  1. 1.Korolev Samara State Aerospace University (National Research University)SamaraRussia

Personalised recommendations