Instruments and Experimental Techniques

, Volume 60, Issue 4, pp 562–569 | Cite as

Features of focusing of a high-intensity pulsed ion beam formed by a diode with a passive anode

  • X. P. Zhu
  • L. Ding
  • Q. Zhang
  • A. I. Pushkarev
  • M. K. Lei
General Experimental Techniques


The results of investigating the focusing of a high-power ion beam, which is formed by a diode with a semicylindrical geometry and a passive anode, are presented. Two types of focusing diodes were investigated: with external magnetic insulation (one-pulse mode) and self-magnetic insulation of electrons (twopulse mode). Measurements of the energy-density distribution of the ion beam and the ion-current density were performed. It was found that when the diode operates in the two-pulse mode, the region of the maximum ion-beam energy density in the focal plane is displaced relative to the region of the maximum ion-current density by 5–10 mm. It is shown that the effect of a displacement of the focal spot with the maximum energy density is determined by the presence of a large number of accelerated neutral atoms in the ion beam. These atoms are produced as a result of the ion charge-exchange process in the anode–cathode gap of the ion diode during its operation in the two-pulse mode.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boiko, V.I., Skvortsov, V.A., Fortov, V.E., and Shamanin, I.V., Vzaimodeistvie impul’snykh puchkov zaryazhennykh chastits s veshchestvom (Interaction of Charged Particle Pulse Beams with Matter), Moscow: Fizmatlit, 2003.Google Scholar
  2. 2.
    Pushkarev, A.I., Isakova, Y.I., Khailov, I.P., and Zhong, H., Rev. Sci. Instrum., 2015, vol. 86, no. 7, p. 073305. doi 10.1063/1.4926564ADSCrossRefGoogle Scholar
  3. 3.
    Humphries, S., Charged Particle Beams, New York: Wiley, 1990.Google Scholar
  4. 4.
    Proskurovsky, D.I., Rotshtein, V.P., Ozur, G.E., Markov, A.B., Nazarov, D.S., Shulov, V.A., Ivanov, Yu.F., and Buchheit, R.G., J. Vacuum Sci. Technol. A, 1998, vol. 16, no. 4, p. 2480.ADSCrossRefGoogle Scholar
  5. 5.
    Pushkarev, A.I., Isakova, Yu.I., and Khailov, I.P., Tech. Phys. Lett., 2014, vol. 40, no. 7, p. 545. doi 10.1134/S1063785014070098ADSCrossRefGoogle Scholar
  6. 6.
    Olson, C.L., J. Fusion Energy, 1982, vol. 1, no. 4, p. 309.ADSCrossRefGoogle Scholar
  7. 7.
    Yatsui, K., Tokuchi, A., Tanaka, H., Ishizuka, H., Kawai, A., Sai, E., Masugata, K., Ito, M., and Matsui. M. Laser Part. Beams, 1985, vol. 3, Part 2, p. 119.ADSCrossRefGoogle Scholar
  8. 8.
    Davis, H.A., Bartsch, R.R., Olson, J.C., Rej, D.J., and Waganaar, W.J., J. Appl. Phys., 1997, vol. 82, no. 7, p. 3223, S0021-8979(97)5419-4.ADSCrossRefGoogle Scholar
  9. 9.
    Bystritskii, V.M., Glushko, Yu.A., Kharlov, A.V., and Sinebryukhov, A.A., Laser Part. Beams, 1991, vol. 9, no. 3, p. 691. doi 10.1017/S0263034600003700ADSCrossRefGoogle Scholar
  10. 10.
    Zieher, K.W., Nucl. Instrum. Methods Phys. Res. Sec. A: Accelerat., Spectrom. Detect. Assoc. Equip.,1984, vol. 228, no. 1, p. 161.ADSCrossRefGoogle Scholar
  11. 11.
    Bauer, W., Citron, A., Kihhn, W., Rogner, A., Schimassek, W., and Stoltz, O., Proc. 6th IEEE Int. Pulsed Power Conf., Arlington, Virginia, 1987, ?. 244.Google Scholar
  12. 12.
    Zhu, X.P., Lei, M.K., Dong, Z.H., and Ma, T.C., Rev. Sci. Instrum., 2003, vol. 74, no. 1–1, p. 47. doi 10.1063/1.1529303ADSCrossRefGoogle Scholar
  13. 13.
    Isakova, Yu.I., Pushkarev, A.I., and Kholodnaya, G.E., Instrum. Exp. Tech., 2011, vol. 54, no. 2, p. 183. doi 10.1134/S0020441211020175CrossRefGoogle Scholar
  14. 14.
    Isakova, Yu.I. and Pushkarev, A.I., Instrum. Exp. Tech., 2013, vol. 56, no. 2, p. 185. doi 10.1134/S0020441213020085CrossRefGoogle Scholar
  15. 15.
    Pushkarev, A.I., Isakova, Yu.I., and Khailov, I.P., Laser Part. Beams, 2013, vol. 31, no. 3, p. 493.ADSCrossRefGoogle Scholar
  16. 16.
    Pushkarev, A.I., Isakova, Yu.I., and Khailov, I.P., Instrum. Exp. Tech., 2015, vol. 58, no. 5, p. 667. doi 10.1134/S0020441215040090CrossRefGoogle Scholar
  17. 17.
    Pushkarev, A.I., Isakova, Yu.I., and Khailov, I.P., Instrum. Exp. Tech., 2015, vol. 58, no. 1, p. 90. doi 10.1134/S0020441215010285CrossRefGoogle Scholar
  18. 18.
    Zhu, X.P., Dong, Z.H., Han, X.G., Xin, J.P., and Lei, M.K., Rev. Sci. Instrum. 2007, vol. 78, no. 2, p. 023301. doi 10.1063/1.2437760Google Scholar
  19. 19.
    Pointon, T.D., J. Appl. Phys., 1989, vol. 66, no. 7, p. 2879. doi 10.1063/1.344193ADSCrossRefGoogle Scholar
  20. 20.
    Pushkarev, A.I., Isakova, Y.I., and Khaylov, I.P., Nucl. Instrum. and Methods in Phys. Res. Sec. B: Beam Interactions with Materials and Atoms, 2015, vol. 343, p. 138. 10.1016/j.nimb.2014.11.021ADSCrossRefGoogle Scholar
  21. 21.
    Xiao Yu, Jie Shen, Miao Qu, Wenbin Liu, Haowen Zhong, Jie Zhang, Yanyan Zhang, Sha Yan, Gaolong Zhang, Xiaofu Zhang, and Xiaoyun Le, Vacuum, 2015, vol. 113, p. 36. 10.1016/j.vacuum. 2014.12.003ADSCrossRefGoogle Scholar
  22. 22.
    Pushkarev, A., Physics of Plasmas, 2015, vol. 22, no. 10, p. 103106. doi 10.1063/1.4933215ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • X. P. Zhu
    • 1
  • L. Ding
    • 1
  • Q. Zhang
    • 1
  • A. I. Pushkarev
    • 1
    • 2
  • M. K. Lei
    • 1
  1. 1.Surface Engineering Laboratory, School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  2. 2.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations