Instruments and Experimental Techniques

, Volume 60, Issue 3, pp 394–400 | Cite as

An energy dispersion scheme based on a semiconductor X-ray spectrometer and a broadband monochromator for determining the content of heavy elements from the absorption spectra

  • A. G. Turyanskiy
  • V. M. Senkov
  • K. A. Buryak
  • A. I. Marakhova
  • Ya. M. Stanishevskii
General Experimental Techniques
  • 23 Downloads

Abstract

An energy-dispersion scheme for determining the conсentrations of impurities of heavy elements from the absorption spectra in the regions of X-ray photoabsorption jumps is described. A semiconductor X-ray spectrometer and a pyrolytic graphite monochromator were used to record data in a spectral band of width up to 1 keV. The initial shape of the absorption spectrum in the approximation of an isolated atom was reconstructed by means of a numerical solution of the convolution equation. The scheme provides a sharp increase in the data acquisition and measurement sensitivity. The results of measurements of the Bi and Pb contents in samples with organic matrices and determination of the thicknesses of thin Mo films on diamond substrates are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Bakhtiarov and S. K. Saveliev, X-ray and Fluorescent Analysis of Mineral Raw, St. Petersburg St. Petersb. Univ., 2014.Google Scholar
  2. 2.
    A. G. Revenko, X-ray Spectrometric Fluorescent Analysis of Natural Materials, Novorossiisk Nauka, 1994.Google Scholar
  3. 3.
    E. P. Bertin, Introduction to X-ray Spectrometric Analysis, New York Plenum, 1978.CrossRefGoogle Scholar
  4. 4.
    A. G. Turyanskii, S. S. Gizha, V. N. Senkov, and S. K. Savelyev, Tech. Phys. Lett., 2014, vol. 40, no. 4, p. 346.ADSCrossRefGoogle Scholar
  5. 5.
    A. G. Turyanskii, S. S. Gizha, and V. N. Senkov, Tech. Phys. Lett., 2013, vol. 39, no. 6, p. 573.ADSCrossRefGoogle Scholar
  6. 6.
    A. G. Turiyanskii and I. V. Pirshin, Insrum. Exp. Tech., 2011, vol. 54, no. 4, p. 558.CrossRefGoogle Scholar
  7. 7.
    J. S. Weber, K. W. Goyne, T. Luxton, and A. L. Thompson, J. Environ. Quality, 2015, vol. 44, no. 4, p. 1127. doi 10.2134/jeq2014.10.0447CrossRefGoogle Scholar
  8. 8.
    A. Funatsuki, M. Takaoka, K. Oshita, and M. Takeda, Anal. Sci., 2012, vol. 28, no. 5, p 481. http://doi.org/ doi 10.2116/analsci.28.481CrossRefGoogle Scholar
  9. 9.
    B. L. Henke, E. M. Gullikson, and J.C. Davis, Atomic Data and Nuclear Data Tables, 1993, vol. 54, no. 2, p. 181.ADSCrossRefGoogle Scholar
  10. 10.
    B. G. Lowe and R. A. Sareen, Semiconductor X-Ray Detectors, New York CRC Press, 2013.CrossRefGoogle Scholar
  11. 11.
    A. Williams, Rev. Sci. Instrum., 1983, vol. 54, no. 2, p. 193.ADSCrossRefGoogle Scholar
  12. 12.
    S. Yamashita, K. Taniguchi, S. Nomoto, T. Yamaguchi, and H. Wakita, X-Ray Spectrometry, 1992, vol. 21, no. 2, p 91.CrossRefGoogle Scholar
  13. 13.
    G. V. Fetisov, Synchrotron Radiation. Methods of Substance Structure Study, Moscow Fizmatlit, 2007.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. G. Turyanskiy
    • 1
    • 2
  • V. M. Senkov
    • 1
  • K. A. Buryak
    • 3
  • A. I. Marakhova
    • 2
  • Ya. M. Stanishevskii
    • 2
  1. 1.Lebedev Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.RUDN UniversityMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia

Personalised recommendations