Skip to main content

An atom probe tomography prototype with laser evaporation

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The results of development, creation, and tests of an atom-probe prototype with femtosecond laser evaporation and a position-sensitive microchannel detector with delay lines for the tomographic (3D) analysis of chemical composition of materials are presented. The atom-probe tomography is based on the principle of atom-by-atom “disassembling” of materials and projection magnification, which was previously used in field-ion microscopy, as well as the time-of-flight mass spectrometry that is applied to each evaporated ion. The prototype characteristics (mass resolution, spatial resolution, and data-collection efficiency) were demonstrated in study of tungsten.

This is a preview of subscription content, access via your institution.

References

  1. Müller, E.W., Panitz, J.A., and McLane, S.B., Rev. Sci. Instrum., 1968, vol. 39, no. 1, p. 83.

    Article  ADS  Google Scholar 

  2. Müller, E.W., Z. Physik, 1951, vol. 131, no. 1, p. 136. doi 10.1007/BF01329651

    Article  ADS  Google Scholar 

  3. Kellogg, G. and Tsong, T., J. Appl. Phys., 1980, vol. 51, no. 2, p. 1184.

    Article  ADS  Google Scholar 

  4. Miller, M.K., Cerezo, A., Hetherington, M.G., and Smith G.D.W., Atom Probe Field Ion Microscopy, London Oxford Sci. Publ., 1996.

    Google Scholar 

  5. Miller, M.K., Atom Probe Tomography, New York Kluwer Academic, 2000.

    Book  Google Scholar 

  6. High Resolution Imaging and Spectrometry of Materials, Al-Kassab, T., Wollenberger, H., Schmitz, G., Kirchheim, R., Ernst T., and Ruhle, M., Eds., Berlin, Springer-Verlag, 2003.

  7. Rogozhkin, S.V., Ageev, V.S., Aleev, A.A., Zaluzhnyi, A.G., Leont’eva-Smirnova, M.V., and Nikitin, A.A., Phys. Met. Metallogr., 2009, vol. 108, no. 6, p. 579. doi 10.1134/S0031918X09120084

    Article  ADS  Google Scholar 

  8. Aleev, A.A., Iskandarov, N.A., Klimenkov, M., Lindau, R., Möslang, A., Nikitin, A.A., Rogozhkin, S. V., Vladimirov, P., and Zaluzhnyi, A.G., J. Nuclear Materials, 2011, vol. 409, no. 2, p. 65. doi 10.1016/j.jnucmat. 2010.09.008

    Article  ADS  Google Scholar 

  9. Rogozhkin, S.V., Aleev, A.A., Zaluzhnyi, A.G., Nikitin, A.A., Iskandarov, N.A., Vladimirov, P., Lindau, R., and Möslang, A., J. Nuclear Materials, 2011, vol. 409, no. 2, p. 94. doi 10.1016/j.jnucmat.2010.09.021

    Article  ADS  Google Scholar 

  10. Kryukov, A., Debarberis, L., Ballesteros, A., Krsjak, V., Burcl, R., Rogozhkin, S. V., Nikitin, A.A., Aleev, A.A., Zaluzhnyi, A.G., Grafutin, V.I., Ilyukhina, O., Funtikov, Yu.V., and Zeman, A., J. Nuclear Materials, 2012, vol. 429, nos. 1–3, p. 190. doi 10.1016/j.jnucmat. 2012.06.005

    Article  ADS  Google Scholar 

  11. Rogozhkin, S.V., Aleev, A.A., Zaluzhnyi, A.G., Kuibida, R.P., Kulevoi, T.V., Nikitin, A.A., Orlov, N.N., Chalykh, B.B., and Shishmarev, V.B., Phys. Met. Metallogr., 2012, vol. 113, no. 2, p. 200. doi 10.1134/S0031918X12020111

    Article  ADS  Google Scholar 

  12. Suvorov, A.L., Rogozhkin, S.V., Zaluzhnyi, A.G., Aleev, A.A., Bobkov, A.F., Zaitsev, S.V., Karpov, A.V., Kozodaev, M.A., Loginov, B.A., and Makeev, O.N., Vopr. At. Nauki Tekhn. Ser.: Materialoved. Nov. Mater., 2006, no. 1, p. 3.

    Google Scholar 

  13. Rogozhkin, S.V., Orlov, N.N., Aleev, A.A., Zaluzhnyi, A.G., Kozodaev, M.A., Kuibeda, R.P., Kulevoy, T.V., Nikitin, A.A., Chalykh, B.B., Lindau, R., Möslang, A., and Vladimirov, P., Phys. Met. Metallogr., 2015, vol. 116, no. 1, p. 72. doi 10.1134/S0031918X150100939

    Article  ADS  Google Scholar 

  14. Cerezo, A., Godfrey, T.J., Sijbrandij, S.J., Smith, G.D.W., and Warren, P.J., Rev. Sci. Instrum., 1998, vol. 69, no. 1, p. 49. doi 10.1063/1.1148477

    Article  ADS  Google Scholar 

  15. Bas, P., Bostel, A., Deconihout, B., and Blavette, D., Appl. Surf. Sci., 1995, vol. 87/88, p. 298. doi 10.1016/0169-4332(94)00561-3

    Article  ADS  Google Scholar 

  16. Silaeva, E.P., Shcheblanov, N.S., Itina, T.E., Vella, A., Houard, J., Sévelin-Radiguet, N., Vurpillot, F., and Deconihout, B., Appl. Phys. A: Mater. Sci. Proces., 2013, vol. 110, no. 3, p. 703. doi 10.1007/s00339-012-7189-7

    Article  ADS  Google Scholar 

  17. Oberdorfer, C. and Schmitz, G., Microsc. Microanal., 2011, vol. 17, no. 1, p. 15. doi 10.1017/S1431927610093888

    Article  ADS  Google Scholar 

  18. Gordon, L.M. and Joester, D., Nature, 2011, vol. 469, no. 7329, p. 194. doi 10.1038/nature09686

    Article  ADS  Google Scholar 

  19. Cerezo, A., Godfrey, T.J., Sijbrandij, S.J., Smith, G.D.W., and Warren, P.J., Rev. Sci. Instrum., 1998, vol. 69, no. 1, p. 49. doi 10.1063/1.1148477

    Article  ADS  Google Scholar 

  20. Bemont, E., Bostel, A., Bouet, M., da Costa, G., Chambreland, S., Deconihout, B., and Hono, K., Ultramicroscopy, 2003, vol. 95, nos. 1–4, p. 231. doi 10.1016/S0304-3991(02)00321-2

    Article  Google Scholar 

  21. Jagutzki, O., Cerezo, A., Czasch, A., Dorner, R., Hattass, M., Huang, M., Mergel, V., Spillmann, U., Ullmann-Pfleger, K., Weber, T., Schmidt-Bocking, H., and Smith, G.D.W., IEEE Trans. Nucl. Sci., 2002, vol. 49, no. 5, p. 2477. doi 10.1109/TNS.2002.803889

    Article  ADS  Google Scholar 

  22. Stender, P., Oberdorfer, C., Artmeier, M., Pelka, P., Spaleck, F., and Schmitz, G., Ultramicroscopy, 2007, vol. 107, no. 9, p. 726. doi 10.1016/j.ultramic.2007. 02.032

    Article  Google Scholar 

  23. Inoue, K., Yano, F., Nishida, A., Takamizawa, H., Tsunomura, T., Nagai, Y., and Hasegawa, M., Ultramicroscopy, 2009, vol. 109, no. 12, p. 1479. doi 10.1016/j.ultramic.2009.08.002

    Article  Google Scholar 

  24. Gault, B., Menand, A., de Geuser, F., Deconihout, B., and Danoix, R., Appl. Phys. Lett., 2006, vol. 88, no. 11, p. 14101. doi 10.1063/1.2186394

    Article  Google Scholar 

  25. Sakurai, T. and Müller, E.W., Phys. Rev. Lett., 1973, vol. 30, no. 12, p. 532. doi 10.1103/PhysRevLett.30.532

    Article  ADS  Google Scholar 

  26. Miller, M.K. and Forbes, R.G., Atom-Probe Tomography. The Local Electrode Atom Probe, London Springer-Verlag, 2014. doi 10.1007/978-1-4899-7430-310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rogozhkin.

Additional information

Original Russian Text © S.V. Rogozhkin, A.A. Aleev, A.A. Lukyanchuk, A.S. Shutov, O.A. Raznitsyn, S.E. Kirillov, 2017, published in Pribory i Tekhnika Eksperimenta, 2017, No. 3, pp. 129–134.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rogozhkin, S.V., Aleev, A.A., Lukyanchuk, A.A. et al. An atom probe tomography prototype with laser evaporation. Instrum Exp Tech 60, 428–433 (2017). https://doi.org/10.1134/S002044121702021X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044121702021X