Instruments and Experimental Techniques

, Volume 59, Issue 6, pp 848–856 | Cite as

A mobile microcell for measuring the electrical characteristics of individual nanowires and nanotubes

  • R. L. Volkov
  • N. I. Borgardt
  • V. L. Gurtovoi
  • A. I. Il’in
  • A. V. Karabulin
  • V. I. Matyushenko
  • I. I. Khodos
  • E. B. GordonEmail author
Laboratory Techniques


A mobile measuring cell was proposed and created using a focused ion beam as a nanoknife for measuring the electrical characteristics of individual nanowires and nanotubes by the four-wire method. The cell consists of two elements: the basic one, on whose surface a nanoconductor is deposited, and the auxiliary element that provides the electrical connection of the primary element to the wires of the external measuring circuit. Micro- and nanoscale wires in both elements of the cell were formed from gold films deposited on a silicon oxide surface. This provides reliable contacts between a nanoobject and the wires. In this paper, the application of the proposed method was demonstrated using examples of a multiwalled carbon nanotube and a thin platinum nanowire. The electrical resistance of the nanotube was measured using the two-wire method, whereas the current–voltage characteristic for the platinum nanowire was measured via the fourwire method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mishra, A., Titova, L.V., Hoang, T.B., Jackson, H.E., Smith, L.M., Yarrison-Rice, J.M., Kim, Y., Joyce, H.J., Gao, Q., Tan, H.H., and Jagadish, C., Appl. Phys. Lett., 2007, vol. 91, p. 263104. doi 10.1063/1.2828034ADSCrossRefGoogle Scholar
  2. 2.
    Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.-H., and Lieber, C.M., Science, 2001, vol. 294, p. 1313. doi 10.1126/science.1066192ADSCrossRefGoogle Scholar
  3. 3.
    Beckman, R., Johnston-Halperin, E., Luo, Y., Green, J.E., and Heath, J.R., Science, 2005, vol. 310, p. 465. doi 10.1126/science.1114757ADSCrossRefGoogle Scholar
  4. 4.
    Nadj-Perge, S., Frolov, S.M., Bakkers, E.P.A.M., and Kouwenhoven, L.P., Nature, 2010, vol. 468, p. 1084. doi 10.1038/nature09682ADSCrossRefGoogle Scholar
  5. 5.
    Kolmakov, A. and Moskovits, M., Ann. Rev. Mater. Res., 2004, vol. 34, p. 151. doi 10.1146/annurev.matsci. 34.040203.112141ADSCrossRefGoogle Scholar
  6. 6.
    Yan, X.-M., Kwon, S., Contreras, A.M., Koebel, M.M., Bokor, J., and Somorjai, G.A., Catal. Lett., 2005, vol. 105, p. 127. doi 10.1007/s10562-005-8681-xCrossRefGoogle Scholar
  7. 7.
    Gordon, E.B., Karabulin, A.V., Matyushenko, V.I., Rostovshchikova, T.N., Nikolaev, S.A., Lokteva, E.S., and Golubina, E.V., Gold Bulletin, 2015, vol. 48, no. 3. p. 119. doi 10.1007/s13404-015-0168-yCrossRefGoogle Scholar
  8. 8.
    Endo, M., Takeuchi, K., Kobori, K., Takahashi, K., Kroto, H.W., and Sarkar, A., Carbon, 1995, vol. 33, p. 873. doi 10.1016/0008-6223(95) 00016-7CrossRefGoogle Scholar
  9. 9.
    Baker, R.T.K. and Harris, P.S., Chem. Phys. Carbon, 1978, vol. 14, p. 83.Google Scholar
  10. 10.
    Gordon, E.B. and Okuda, Y., J. Low Temp. Phys., 2009, vol. 35, no. 3, p. 209. doi 10.1063/1.3081156CrossRefGoogle Scholar
  11. 11.
    Gordon, E.B., Karabulin, A.V., Matyushenko, V.I., Sizov, V.D., and Khodos, I.I., Zh. Eksp. Teor. Fiz., 2010, vol. 112, p. 1061. doi 10.1134/S1063776111040182Google Scholar
  12. 12.
    Gordon, E.B., Karabulin, A.V., Matyushenko, V.I., Sizov, V.D., and Khodos, I.I., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 25229. doi 10.1039/c4cp03471fCrossRefGoogle Scholar
  13. 13.
    Gordon, E.B., Karabulin, A.V., Morozov, A.A., Matyushenko, V.I., Sizov, V.D., and Khodos, I.I., J. Phys. Chem. Lett., 2014, vol. 5, no. 7, p. 1072. doi 10.1021/ jz5003583CrossRefGoogle Scholar
  14. 14.
    Gordon, E.B., Karabulin, A.V., Matyushenko, V.I., Sizov, V.D., and Khodos, I.I., Las. Phys. Lett., 2015, vol. 12, p. 096002. doi 10.1088/1612-2011/12/9/096002ADSCrossRefGoogle Scholar
  15. 15.
    Liu, M., Chen, Y., Guo, Q., Li, R., Sun, X., and Yang, J., J. Nanoelectron. Optoelectron., 2011, vol. 6, p. 1. http:// doi 10.1166/jno.2011.1153ADSCrossRefGoogle Scholar
  16. 16.
    Cha, D.K., Lee, B., Jeon, J., Kim, J., and Kim, M.J., Microsc. Microanal., 2007, vol. 13, p. 720. doi 10.1017/S1431927607077987Google Scholar
  17. 17.
    Long, Y.Z., Duvail, J.L., Li, M.M., Gu, C., Liu, Z., and Ringer, S.P., Nanoscale Res. Lett., 2010, vol. 5, p. 237. doi 10.1007/s11671-009-9471-yADSCrossRefGoogle Scholar
  18. 18.
    Bachtold, A., Henny, M., Terrier, C., Strunk, C., Schonenberger, C., Salvetat, J.-P., Bonard, J.-M., and Forro, L., Appl. Phys. Lett., 1998, vol. 73, p. 274. doi 10.1063/1.121778ADSCrossRefGoogle Scholar
  19. 19.
    Walton, A.S., Allen, C.S., Critchley, K., Gorzny, M.L., Kendry, J.E.M., Brydson, R.M.D., Hickley, B.J., and Evans, S.D., Nanotechnology, 2007, vol. 18, p. 065204. doi 10.1088/0957-4484/18/6/ 065204ADSCrossRefGoogle Scholar
  20. 20.
    Peng, Y., Cullis, T., and Inkson, B., Appl. Phys. Lett., 2008 vol. 93, p. 183112. doi 10.1063/ 1.3005423ADSCrossRefGoogle Scholar
  21. 21.
    Fu, Y., Bryan, N.K.A., and Shing, O.N., Sen. Actuators, 2001, vol. 88, p. 58. doi 10.1016/S0924-4247(00)00490-8CrossRefGoogle Scholar
  22. 22.
    Dale, G., Langford, R.M., Ewen, P.J.S., and Reeves, C.M., J. Non-Cryst. Solids, 2000, vol. 266–269, p. 913. doi 10.1016/S0022-3093(00)00021-1CrossRefGoogle Scholar
  23. 23.
    Giannuzzi, L.A. and Stevie, F.A., Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice, New York: Springer-Verlag, 2004.Google Scholar
  24. 24.
    Volkov, R.L., Borgardt, N.I., Kukin, V.N., Prikhod’ko, A.S., Basaev, A.S., and Shaman, Yu.P., J. Surf. Invest. X-ra., Synchr. Neutron Tech., 2011, vol. 5, p. 900.CrossRefGoogle Scholar
  25. 25.
    Moroshkin, P., Lebedev, V., Grobety, B., Neururer, C., Gordon, E.B., and Weis, A., Europhys. Lett., 2010, vol. 90, p. 34002. doi 10.1209/0295-5075/90/34002ADSCrossRefGoogle Scholar
  26. 26.
    Gordon, E.B., Karabulin, A.V., Matyushenko, V.I., Sizov, V.D., and Khodos, I.I., Low Temp. Phys., 2010, vol. 36, p. 590. doi 10.1063/1.3481303ADSCrossRefGoogle Scholar
  27. 27.
    Maslova, O.A., Mikheikin, A.S., Leontiev, I.N., Yucyuk, Y.I., and Tkachev, A.G., Nanotechnologies in Russia, 2010, vol. 5, p. 641. doi 10.1134/ S1995078010090089CrossRefGoogle Scholar
  28. 28.
    Stetter, A., Vancea, J., and Back, C.H., Appl. Phys. Lett., 2008, vol. 93, p. 172103. doi 10.1063/1.3006426ADSCrossRefGoogle Scholar
  29. 29.
    Dohn, S., Molhave, K., and Boggild, P., Sensor Lett., 2005, vol. 3, p. 1. doi 10.1166/sl.2005.041CrossRefGoogle Scholar
  30. 30.
    Burlakov, A.A., Gurtovoi, V.L., Ilin, A.I., Nikulov, A.V., and Tulin, V.A., Phys. Lett. A, 2012, vol. 376, p. 2325. doi 10.1016/j.physleta.2012.04.032ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • R. L. Volkov
    • 1
  • N. I. Borgardt
    • 1
  • V. L. Gurtovoi
    • 2
    • 3
  • A. I. Il’in
    • 1
  • A. V. Karabulin
    • 4
  • V. I. Matyushenko
    • 5
  • I. I. Khodos
    • 2
  • E. B. Gordon
    • 6
    Email author
  1. 1.MIET National Research University of Electronic TechnologyZelenograd, MoscowRussia
  2. 2.Institute of Problems of Microelectronic Technology and Ultra-High-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  4. 4.MEPhI National Research Nuclear UniversityMoscowRussia
  5. 5.Talroze Institute of Energy Problems of Chemical Physics, Chernogolovka BranchRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  6. 6.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations