Instruments and Experimental Techniques

, Volume 59, Issue 5, pp 728–732 | Cite as

An electromechanical x-ray optical element based on a hysteresis-free monolithic bimorph crystal

  • A. E. Blagov
  • A. S. Bykov
  • I. V. Kubasov
  • M. D. Malinkovich
  • Yu. V. Pisarevskii
  • A. V. Targonskii
  • I. A. Eliovich
  • M. V. Kovalchuk
General Experimental Techniques

Abstract

A hysteresis-free electrically controlled X-ray optical element based on a monolithic bi-domain bimorphic piezoelectric actuator that is made of lithium niobate crystal was proposed and successfully tested in practice. This element is used for electronically controlled adjustment of the angular position of an X-ray optical monochromator in a range of up to 200″ and is characterized by a high relative linearity (up to 98%), repeatability (the repeatability error is no more than 2%), and low control voltages (up to 100 V). The hysteresis- free behavior of the dependence of the angular position of the element on the control element, which demonstrates the high efficiency of the hysteresis-free monolithic bimorphic piezoactuators as controlled elements of X-ray optics, is shown.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    James, R.W., The Optical Principles of the Diffraction of X-rays. The Crystalline state–Vol. II. Ithaca: Comell Univ., 1943; Moscow: Inostrannaya Literatura, 1950.Google Scholar
  2. 2.
    Blagov, A.E., Koval’chuk, M.V., Kon, V.G., and Pisarevskii, Yu.V., Crystallogr. Rep., 2006, vol. 51, no. 5, p. 729. doi 10.1134/S1063774506050026ADSCrossRefGoogle Scholar
  3. 3.
    Blagov, A.E., Koval’chuk, M.V., Pisarevskii, Yu.V., and Prosekov, P.A., Crystallogr. Rep., 2008, vol. 53, no. 3, p. 379. doi 10.1134/S1063774508030036ADSCrossRefGoogle Scholar
  4. 4.
    Blagov, A.E., Koval’chuk, M.V., Kon, V.G., Lider, V.V., and Pisarevskii, Yu.V., J. Exp. Theor. Phys., 2005, vol. 101, no. 5, p. 770. doi 10.1134/1.2149057ADSCrossRefGoogle Scholar
  5. 5.
    Koval’chuk, M.V., Targonskii, A.V., Blagov, A.E., Zanaveskina, I.S., and Pisarevskii, Yu.V., Crystallogr. Rep., 2011, vol. 56, no. 5, p. 828. doi 10.1134/S1063774511050130ADSCrossRefGoogle Scholar
  6. 6.
    Blagov, A.E., Prosekov, P.A., Targonskii, A.V., and Eliovic., Ya.A., Crystallogr. Rep., 2015, vol. 60, no. 2, p. 167. doi 10.7868/S0023476115020058ADSCrossRefGoogle Scholar
  7. 7.
    Koval’chuk, M.V., Method of standing X-ray waves in the study of semiconductor near-surface layer structure, Doctoral (Phys.-Math.) Dissertation, Moscow: Inst. Kristallogr. Akad. Nauk SSSR, 1987.Google Scholar
  8. 8.
    Miller, G.L., Boie, R.A., Cowan, P.L., Golovchenko, J.A., Kerr, R.W., and Robinson, D.A.H., Rev. Sci. Instrum., 1979, vol. 50, no. 9, p. 1062.ADSCrossRefGoogle Scholar
  9. 9.
    Bryant, M.D. and Keltie, R.F., Sen. Actuators, 1986, vol. 9, p. 95. (part 1) doi 10.1016/0250-6874(86)80011-7CrossRefGoogle Scholar
  10. 10.
    Bryant, M.D. and Keltie, R.F., Sen. Actuators, 1986, vol. 9, p. 105. (part 2) doi 10.1016/0250-6874(86) 80012-9CrossRefGoogle Scholar
  11. 11.
    Nishikawa, O., Tomitori, M., and Minakuchi, A., Surf. Sci., 1987, vol. 181, p. 210. doi 10.1016/0039-6028(87) 90160-9ADSCrossRefGoogle Scholar
  12. 12.
    Krolzig, A., Materlik, G., and Zegenhagen, J. Nucl. Instrum. Methods, A, 1984, vol. 219. p. 430. doi 10.1016/0167-5087(84)90355-7CrossRefGoogle Scholar
  13. 13.
    Malinkovich, M.D., Antipov, V.V., and Bykov, A.S., RF Patent 2492283, Byull. Izobret., 2013, no.25.Google Scholar
  14. 14.
    Bykov, A.S., Grigoryan, S.G., Zhukov, R.N., Kiselev, D.A., Ksenich, S.V., Kubasov, I.V., Malinkovich, M.D., and Parkhomenko, Yu.N., Russ. Microelektron., 2014, vol. 43, no. 8, p. 536. doi 10.17073/1609-3577-2013-3-27-33CrossRefGoogle Scholar
  15. 15.
    Kubasov, I.V., Timshina, M.S., Kiselev, D.A., Malinkovich, M.D., Bykov, A.S., and Parkhomenko, Yu.N., Crystallogr. Rep., 2015, vol. 60, no. 5, p. 700. doi 10.7868/S002347611504013XADSCrossRefGoogle Scholar
  16. 16.
    Nakamura, K. and Shimizu, H., Ferroelectrics, 1989, vol. 93, p. 211. doi 10.1080/00150198908017348CrossRefGoogle Scholar
  17. 17.
    Pinsker, Z.G., Kov’ev, E.K., Mirenskii, A.V., Fokin, A.S., Koval’chuk, M.V., and Shilin, Yu.N., USSR Inventor’s Certificate 463045, Byull. Izobret., 1975, no.9.Google Scholar
  18. 18.
    Blagov, A.E., Pisarevskii, Yu.V., and Koval’chuk, M.V., Crystallogr. Rep., 2016, vol. 61, no. 2, p. 191. doi 10.7868/S0023476116010033CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • A. E. Blagov
    • 1
    • 2
  • A. S. Bykov
    • 3
  • I. V. Kubasov
    • 3
  • M. D. Malinkovich
    • 3
  • Yu. V. Pisarevskii
    • 1
    • 2
  • A. V. Targonskii
    • 1
    • 2
  • I. A. Eliovich
    • 1
    • 2
  • M. V. Kovalchuk
    • 1
    • 2
  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  2. 2.National Research Centre Kurchatov InstituteMoscowRussia
  3. 3.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations