Skip to main content
Log in

Flow-Injection Amperometric Determination of Adrenalin, Melatonin, and Cortisol on an Electrode Modified with a Gold–Palladium Binary System and a Nafion Film

  • Published:
Inorganic Materials Aims and scope

Abstract

The control of the precise concentration of steroid hormones and their synthetic analogs in biomedical objects is a relevant analytical task. A method for selective and highly sensitive simultaneous amperometric determination of adrenaline, melatonin, and cortisol with the use of a two-detector flow-injection system is developed. Screen-printed carbon electrodes (SPE) with one or two working electrodes modified with a gold–palladium binary system that exhibits catalytic activity upon electrooxidation of the organic compounds under consideration are used as detectors. The high sensitivity of determination is attributed to the catalytic properties of the metal modifier: the transition from the metal to the binary system leads to an increase in the catalytic oxidation current of hormones. The selectivity of determination of adrenaline in the presence of melatonin and cortisol is provided by the difference in the oxidation potentials of the hormones on the proposed electrode. For selective determination of melatonin and cortisol, the surface of the modified working electrode is coated with a Nafion film. The difference of potentials of the peaks of oxidation of adrenaline, melatonin, and cortisol on such an electrode is 300 mV. The proposed method is tested in the analysis of urine samples. The flow-injection scheme is supplemented with a dialyzer and a chromatographic minicolumn to eliminate the interfering effect of electrophilic compounds. The linear bilogarithmic dependence of the analytical signal on the concentration of adrenaline, melatonin, and cortisol is observed in the ranges of 5.0 × 10–10–5.0 × 10–3, 5.0 × 10–11–5.0 × 10–3, and 5.0 × 10–12–5.0 × 10–3 mol/L, respectively. Amperometric determination of the hormones in the flow-injection system leads to an increase in the productivity of the analysis and a decrease in the consumption of the sample and makes it possible to automate the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Charithra, M.M. and Manjunatha, J.G., Electrochemical sensing of adrenaline using surface modified carbon nanotube paste electrode, Mater. Chem. Phys., 2021, vol. 262, p. 124293. https://doi.org/10.1016/j.matchemphys.2021.124293

    Article  CAS  Google Scholar 

  2. Yousif, N.M., Attia, R.M., and Balboul, M.R., Adrenaline biosensors based on r Go/Ag nanocomposites functionalized textiles using advanced electron beam irradiation technique, J. Organomet. Chem., 2022, vol. 972, p. 122392. https://doi.org/10.1016/j.jorganchem.2022.122392

    Article  CAS  Google Scholar 

  3. Duan, D., Ding, Y., Li, L., et al., Rapid quantitative detection of melatonin by electrochemical sensor based on carbon nanofibers embedded with FeCo alloy nanoparticles, J. Electroanal. Chem., 2020, vol. 873, p. 114422. https://doi.org/10.1016/j.jelechem.2020.114422

    Article  CAS  Google Scholar 

  4. Freitas, R.C., Orzari, L.O., Ferreira, L.M., et al., Electrochemical determination of melatonin using disposable self-adhesive inked paper electrode, J. Electroanal. Chem., 2021, vol. 897, p. 115550. https://doi.org/10.1016/j.jelechem.2021.115550

    Article  CAS  Google Scholar 

  5. Tikhomirova, O.V., Butyrina, E.V., Zybina, N.N., and Frolova, M.Yu., Evaluation of the excretion of the main metabolite of melatonin in the diagnosis of psychophysiological insomnia, Med. Alfavit, 2013, vol. 3, no. 16, pp. 62–68.

    Google Scholar 

  6. Ba-Ali, S., Brondsted, E., Andersen, H.U., et al., Assessment of diurnal melatonin, cortisol, activity, and sleep wake cycle in patients with and without diabetic retinopathy, Sleep Med., 2019, vol. 54, pp. 35–42. https://doi.org/10.1016/j.sleep.2018.10.018

    Article  PubMed  Google Scholar 

  7. Smajdor, J., Piech, R., Piek, M., et al., Carbon black as a glassy carbon electrode modifier for high sensitive melatonin determination, J. Electroanal. Chem., 2017, vol. 799, pp. 278–284. https://doi.org/10.1016/j.jelechem.2017.06.013

    Article  CAS  Google Scholar 

  8. Esen, E., Osman, B., and Demir, M.N., Molecularly imprinted solid-phase extraction sorbent for selective determination of melatonin, Microchem. J., 2021, vol. 170, p. 106666. https://doi.org/10.1016/j.microc.2021.106666

    Article  CAS  Google Scholar 

  9. Gevaerd, A., Watanabe, E.Y., Belli, C., et al., A complete labmade point of care device for non-immunological electrochemical determination of cortisol levels in salivary samples, Sens. Actuators, B, 2021, vol. 332, p. 129532. https://doi.org/10.1016/j.snb.2021.129532

    Article  CAS  Google Scholar 

  10. Borazjani, M., Mehdinia, A., and Jabbari, A., A cortisol nanocomposite-based electrochemical sensor for enantioselective recognition of mandelic acid, J. Solid State Electrochem., 2018, vol. 22, pp. 355–363. https://doi.org/10.1007/s10008-017-3762-5

    Article  CAS  Google Scholar 

  11. Sun, K., Ramgir, N., and Bhansali, S., An immunoelectrochemical sensor for salivary cortisol measurement, Sens. Actuators, B, 2008, vol. 133, no. 2, pp. 533–537. https://doi.org/10.1016/j.snb.2008.03.018

    Article  CAS  Google Scholar 

  12. Malysheva, N.M., Kolesnikova, G.S., and Ilyin, A.V., Modification of technique of detection of free cortisol in urine, Klin. Lab. Diagn., 2017, vol. 62, no. 6, pp. 339–342. https://doi.org/10.18821/0869-2084-2017-62-6-339-342

    Article  CAS  PubMed  Google Scholar 

  13. Cardoso, C.E., Martins, R.O.R., Telles, C.A.S., et al., Sequential determination of hydrocortisone and epinephrine in pharmaceutical formulations via photochemically enhanced fluorescence, Microchim. Acta, 2004, vol. 146, pp. 79–84. https://doi.org/10.1007/s00604-003-0173-3

    Article  CAS  Google Scholar 

  14. Trojanowicz, M. and Pyszynska, M., Flow-injection methods in water analysis recent developments, Molecules, 2022, vol. 27, no. 4, p. 1410. https://doi.org/10.3390/molecules27041410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shaidarova, L.G., Chelnokova, I.A., Leksina, Yu.A., et al., Flow-injection amperometric determination of dopa and tyrosine at a dual electrode modified with gold-cobalt binary system, J. Anal. Chem., 2018, vol. 73, no. 2, pp. 176–182. https://doi.org/10.1134/S1061934818020119

    Article  CAS  Google Scholar 

  16. Zeinali, H., Bagheri, H., Monsef-Khoshhesab, Z., et al., Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO2–Co3O4@rGO nanocomposite, Mater. Sci. Eng. C, 2017, vol. 71, pp. 386–394. https://doi.org/10.1016/j.msec.2016.10.020

    Article  CAS  Google Scholar 

  17. Alpar, N., Pýnar, P.T., Yardym, Y., et al., Voltammetric method for the simultaneous determination of melatonin and pyridoxine in dietary supplements using a cathodically pretreated boron-doped diamond electrode, Electroanalysis, 2017, vol. 29, pp. 1691–1699. https://doi.org/10.1002/elan.201700077

    Article  CAS  Google Scholar 

  18. Gevaerd, A., Watanabe, E.Y., Belli, C., et al., A complete lab-made point of care device for non-immunological electrochemical determination of cortisol levels in salivary samples, Sens. Actuators, B, 2021, vol. 332, p. 129532. https://doi.org/10.1016/j.snb.2021.129532

    Article  CAS  Google Scholar 

  19. Budnikov, G.K., Maystrenko, V.N., and Vyaselev, M.R., Osnovy sovremennogo elektrokhimicheskogo analiza (Fundamentals of Modern Electrochemical Analysis), Moscow: BINOM. Labor. Znanii, 2003.

Download references

Funding

This work was supported by the Program of Strategic Academic Leadership of the Kazan (Volga Region) Federal University (Priority-2030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Shaidarova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaidarova, L.G., Chelnokova, I.A., Leksina, Y.A. et al. Flow-Injection Amperometric Determination of Adrenalin, Melatonin, and Cortisol on an Electrode Modified with a Gold–Palladium Binary System and a Nafion Film. Inorg Mater 59, 1474–1481 (2023). https://doi.org/10.1134/S0020168523140121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523140121

Keywords:

Navigation