Skip to main content
Log in

Content Analysis of Data on the Thermal Properties of Fluoride and Modified Fluoride Glasses

  • Published:
Inorganic Materials Aims and scope

Abstract—

Using content analysis and the Python programming environment, we have found a number of general relationships determining the thermal properties of fluoride and modified fluoride glasses. Their compositions have been classified according to their glass transition temperature (Tg) and the difference between their crystallization onset temperature (Tx) and glass transition temperature: TxTg. The use of Kauzmann’s rule for fluoride glasses, unmodified and modified with other halogens, has been shown to be more reliable if the Tg/Tm ratio is used, compared to the Tg/Tl ratio. We have qualitatively assessed how anion modification influences characteristic temperatures (glass transition temperature Tg, crystallization onset temperature Tx, crystallization peak temperature Tc, melting onset temperature Tm, and liquidus temperature Tl) and crystallization stability criteria (Hruby criterion K, Saad–Poulain criterion S, reduced thermal stability interval H, thermal stability interval TxTg, and reduced glass transition temperatures Tg/Tm and Tg/Tl).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Sosso, G.C., Deringer, V.L., Elliot, S.R., and Csanyi, G., Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials, Mol. Simul., 2018, no. 11, pp. 866–880. https://doi.org/10.1080/08927022.2018.1447107

  2. Lu, Z., Chen, X., Liu, X., Lin, D., Wu, Y., Zhang, Y., Wang, H., Jiang, S., Li, H., Wang, X., and Lu, Z., Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses, Comput. Mater., 2020, no. 6, pp. 1–9. https://doi.org/10.1038/s41524-020-00460-x

  3. Fedorov, V.D., Sakharov, V.V., Baskov, P.B., Provorova, A.M., Churbanov, M.F., Plotnichenko, V.G., Ioakhim, P.Kh., Marsel, P., Kirhof, I., and Kobelka, I., Development of high-purity fluoride glasses for instrumentation technology, Ross. Khim. Zh., 2001, vol. 45, nos. 5–6. pp. 51–57.

    CAS  Google Scholar 

  4. Aseev, V.A., Moskaleva, K.S., and Klement’eva, A.V., Ion-activated lead fluoride laser glass-ceramics, Nauchno-Tekh. Vestn. SPbGU ITMO, 2008, vol. 49, no. 4, pp. 221–227.

    Google Scholar 

  5. Savikin, P.A., Egorov, A.S., Budruev, A.S., and Grishin, I.A., Ho3+-doped ZrF4-BaF2-BiF3 ceramic 2-μm laser beam visualizer, Inorg., Mater., 2016, vol. 52, no. 3, pp. 309–312. https://doi.org/10.1134/S0020168516030134

    Article  CAS  Google Scholar 

  6. Goncharuk, V.K., Kotenkov, Yu.A., Merkulov, E.B., et al., RF Patent 2259325, Byull. Izobret., 2005, no. 24.

  7. Andriets, S.P., Dedov, N.V., Malyutina, V.M., and Solov’ev, A.I., RF Patent 2369930, Byull. Izobret., 2009, no. 28.

  8. Goncharuk, V.K., Mikhteev, S.Sh., Mikhteeva, E.Yu., and Gumenyuk, P.V., Optical properties of fluoride glasses, Tr. DVGTU, 2003, no. 135, pp., 132–136.

  9. Ignatieva, L.N. and Buznik, V.M., Quantum chemical study of the structure of glasses based on niobium oxytrifluoride, J. Struct. Chem., 2000, vol. 41, no., 2, pp. 212–216. https://doi.org/10.1007/BF02741585

  10. Vakhmin, S.Yu., Kosilov, A.T., Ozherel’and ev, V.V., Computer simulation, of the atomic structure of metallic palladium glass, Fiz. Khim. Stekla, 2013, vol. 39, no. 6, pp. 938–946.

    Google Scholar 

  11. Kareem, S., Jabeen, N., Taqi, S., Ferhatullah, S., and Ahmed, B., Density of fluoride glasses through artificial intelligence techniques, Ceram. Int., 2021, no. 47, p. 30172. https://doi.org/10.1016/j.ceramint.2021.07.196

  12. Bishnoi, S., Ravinder, R., Grover, H., Kodamana, H., and Krishnan, A., Scalable Gaussian processes for predicting the optical, physical, thermal, and mechanical properties of inorganic glasses with large datasets, Mater. Adv., 2021, no. 2, pp. 477–487. https://doi.org/10.1039/D0MA00764A

  13. Guo, H., Wang, Q., Urban, A., and Artrith, N., Artificial intelligence-aided mapping of the structure–composition–conductivity relationships of glass-ceramic lithium thiophosphate electrolytes, Chem. Mater., 2022, vol. 34, pp. 6702–6712. https://doi.org/10.1021/acs.chemmater.2c00267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Papko, L.F. and Dyadenko, M.V., Khimicheskaya tekhnologiya stekla i sitallov (Chemical Technology of Glass and Glass-Ceramics), Minsk: BGTU, 2017.

  15. Singla, S., Mannan, S., Zaki, M., and Krishnan, A., Accelerated design of chalcogenide glasses through interpretable machine learning for composition–property relationships, J. Phys. Mater., 2023, vol. 6, no. 2, pp. 1–17. https://doi.org/10.1088/2515-7639/acc6f2

    Article  Google Scholar 

  16. Rodionova, O.E., Chemometrics Approach to the Large Chemical Data Analysis, Russ J. Gen. Chem., 2006, vol. 50, no. 2, pp. 128–144.

    CAS  Google Scholar 

  17. Bezhentsev, V.M., Tarasova, O.A., Dmitriev, A.V., Rudik, A.V., Lagunin, A.A., Filimonov, D.A., and Poroikov, V.V., Computer-aided prediction of xenobiotic metabolism in humans, Russ. Chem. Rev., 2016, vol. 85, no. 8, pp. 854–879. https://doi.org/10.1070/RCR4614

    Article  ADS  CAS  Google Scholar 

  18. Mazurin, O.V. and Gusarov, V.V., The future of information technologies in materials science, Glass. Phys. Chem., 2002, vol. 28, no. 1, pp. 50–58. https://doi.org/10.1023/A:1014205630938

    Article  CAS  Google Scholar 

  19. Kiseleva, N.N., Dudarev, V.A., and Zemskov, V.S., Computer information resources of inorganic chemistry and materials science, Russ. Chem. Rev., 2010, vol. 79, no. 2, pp. 145–166. https://doi.org/10.1070/RC2010v079n02ABEH004104

    Article  ADS  CAS  Google Scholar 

  20. Zibareva, I.V., Chemistry databases of the scientific and technical network STN International, Russ. Chem. Bull., 2012, vol. 61, no. 3, pp. 682–722. https://doi.org/10.1007/s11172-012-0104-8

    Article  CAS  Google Scholar 

  21. Fedorov, P.P., Glass formation criteria for fluoride systems, Inorg. Mater., 1997, vol. 33, no. 12, pp. 1197–1205.

    CAS  Google Scholar 

  22. Koryakov, Z. and Bitt, V., Low-melting-point glasses with a particular combination of physicochemical properties, Komponenty Tekhnol., 2004, no. 5, pp. 126–128.

  23. Chakvetadze, D.K., Spiridonov, Yu.A., Naumova, K.V., and Sigaev, V.N., Low-melting-point glass systems for vacuum-tight low-temperature fusion-joining of articles in a wide range of LTECs, Usp. Khim. Thim. Tekhnol., 2015, vol. 29, no. 7, pp. 84–86.

    Google Scholar 

  24. Meshkovskii, I.K., Novikov, A.F., and Tokarev, A.V., Khimiya radiomaterialov (Chemistry of Radiomaterials), part 2: Poverkhnost’ i ee obrabotka (Surface and Its Treatment), St. Petersburg: SPb NIU ITMO, 2015.

  25. Butenkov, D., Bakaeva, A., Runina, K., Krol, I., Uslamina, M., Pynenkov, A., Petrova, O., and Avetissov, I., New glasses in the PbCl2–PbO–B2O3 system: structure and optical properties, Ceramics, 2023, no. 6, pp. 1348–1364. https://doi.org/10.3390/ceramics6030083

  26. Gressler, C.A. and Shelby, J.E., Properties and structure of PbO–PbF2–B2O3 glasses, J. Appl. Phys., 1989, vol. 66, pp. 1127–1131. https://doi.org/10.1063/1.343452

    Article  ADS  CAS  Google Scholar 

  27. Samoilenko, V.V., Improving compositional and technological parameters of the fabrication of filament-wound composites based on basalt and glass fiber-reinforced epoxy anhydride matrices, Cand. Sci. (Eng.) Dissertation, Biisk: BTI, 2018.

  28. Mitsel’, A.A., Prikladnaya matematicheskaya statistika (Applied Mathematical Statistics), Tomsk: TUSUR, 2019.

  29. Kaz’mina, O.V., Belomestnova, E.N., and Ditts, A.A., Khimicheskaya tekhnologiya stekla i sitallov (Chemical Technology of Glass and Glass-Ceramics), Tomsk: Tomsk. Politekh. Univ., 2011.

  30. Kruchinin, D.Yu. and Farafontova, E.P., Fizicheskaya khimiya stekloobraznogo sostoyaniya (The Physical Chemistry of the Glassy State), Yekaterinburg: Ural’sk. Univ., 2021.

  31. Appen, A.A., Khimiya stekla (The Chemistry of Glass), Leningrad.: Khimiya, 1974.

  32. Shelby, J.E., Introduction to Glass Science and Technology, Cambridge: Royal Soc. Chem., 2005, 2nd ed.

    Book  Google Scholar 

  33. Khristoforov, A.I. and Khristoforova, I.A., Raschet fiziko-khimicheskikh svoistv stekol (Calculation of the Physicochemical Properties of Glass), Vladimir: Vladimirsk. Gos. Univ., 2004.

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education as part of the state research targets for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, and the Prokhorov General Physics Institute, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Brekhovskikh.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaimugin, L.A., Nikonov, K.S., Moiseeva, L.V. et al. Content Analysis of Data on the Thermal Properties of Fluoride and Modified Fluoride Glasses. Inorg Mater 59, 1002–1011 (2023). https://doi.org/10.1134/S0020168523090157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523090157

Keywords:

Navigation