Skip to main content
Log in

Self-Organization of Various-Scale Structural Groups in a Cu/NbTi Composite under the Effect of Hydrostatic Bundle Extrusion

  • Published:
Inorganic Materials Aims and scope

Abstract—

Using repeated bundle extrusion of a Cu/NbTi composite, we have obtained a high-strength heterophase alloy having superconducting properties. X-ray diffraction characterization has shown that the material we obtained has an unstressed, relaxed structure in the form of self-consistent, locally diffusion-alloyed atomic groups ranging widely in size, which can be divided into three groups: (1) microcrystalline long-range-ordered particles about 450 Å in size, showing up as Debye peaks with sharp tops; (2) mesoscopic clusters with a nanoscale atomic order, responsible for broad diffuse lines; and (3) small low-dimensional atomic groups with short-range order (10–50 Å), responsible for incoherent diffuse X-ray scattering (very broad diffuse halos).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Zhang, D.C., Mao, Y.F., Li, Y.L., Li, J.J., Yuan, M., and Lin, J.G., Effect of ternary alloying elements on microstructure and superelastictity of Ti–Nb alloys, Mater. Sci. Eng., A, 2013, vol. 559, pp. 706–710. https://doi.org/10.1016/j.msea.2012.09.012

    Article  CAS  Google Scholar 

  2. Luz, A.R., Souza, G.B., Lepienski, C.M., Siqueira, C.-J.M., and Kuromoto, N.K., Tribological properties of nanotubes grown on Ti–35Nb alloy by anodization, Thin Solid Films, 2018, vol. 660, pp. 529–537. https://doi.org/10.1016/j.tsf.2018.06.050

    Article  ADS  CAS  Google Scholar 

  3. Tohidi, A.A., Ketabchi, M., and Hasannia, A., Nanograined Ti–Nb microalloy steel achieved by accumulative roll bonding (ARB) process, Mater. Sci. Eng., A, 2013, vol. 577, pp. 43–47. https://doi.org/10.1016/j.msea.2013.04.025

    Article  CAS  Google Scholar 

  4. Edalati, K., Daio, T., Lee, S., Horita, Z., Nishizaki, T., Akune, T., Nojima, T., and Sasaki, T., High strength and superconductivity in nanostructured niobium–titanium alloy by high-pressure torsion and annealing: significance of elemental decomposition and supersaturation, Acta Mater., 2014, vol. 80, pp. 149–158. https://doi.org/10.1016/j.actamat.2014.07.065

    Article  CAS  Google Scholar 

  5. Çaha, I., Alves, A.C., Kuroda, P.A.B., Grandini, C.R., Pinto, A.M.P., Rocha, L.A., and Toptan, F., Degradation behavior of Ti–Nb alloys: corrosion behavior through 21 days of immersion and tribocorrosion behavior against alumina, Corros. Sci., 2020, vol. 167, pp. 108488–108497. https://doi.org/10.1016/j.corsci.2020.108488

    Article  CAS  Google Scholar 

  6. Ignatenko, P.I., Klyakhina, N.A., and Badekin, M.Yu., Structure and properties of metal nitride films produced by ion implantation, Inorg. Mater., 2005, vol. 41, no. 1, pp. 36–41.

    Article  CAS  Google Scholar 

  7. Bachmaier, A. and Pippan, R., High-pressure torsion deformation induced phase transformations and formations: new material combinations and advanced properties, Mater. Trans., 2019, vol. 60, no. 7, pp. 1256–1259. https://www.jstage.jst.go.jp/article/ matertrans/60/7/60_MF201930/_article/-char/en.https://doi.org/10.2320/matertrans.MF201930

    Article  CAS  Google Scholar 

  8. Edalati, K., Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process, Mater. Trans., 2019, vol. 60, no. 7, pp. 1221–1229. doi https://www.jstage.jst.go.jp/article/matertrans/60/7/60_MF201914/_article/-char/en.https://doi.org/10.2320/matertrans.MF201914

    Article  CAS  Google Scholar 

  9. Han, J.-K., Jang Jae-il, Langdon, T.G., and Kawasaki, M., Bulk-state reactions and improving the mechanical properties of metals through high-pressure torsion, Mater. Trans., 2019, vol. 60, no. 7, pp. 1131–1138. https://www.jstage.jst.go.jp/article/matertrans/60/7/60_ MF201908/_article/-char/enhttps://doi.org/10.2320/matertrans.MF201908

    Article  ADS  CAS  Google Scholar 

  10. Panigrahi, A., Sulkowski, B., Waitz, T., Ozaltin, K., Chrominski, W., Pukenas, A., Horky, J., Lewandowska, M., Skrotzki, W., and Zehetbauer, M., Mechanical properties, structural and texture evolution of biocompatible Ti–45Nb alloy processed by severe plastic deformation, J. Mech. Behavior Biomed. Mater., 2016, vol. 62, pp. 93–105. https://doi.org/10.1016/j.jmbbm.2016.04.042

    Article  CAS  Google Scholar 

  11. Samoilenko, Z.A. and, Ivakhnenko, N.N., Phase transitions in a different-scale atomic structure during annealing of magnesium-zinc ferrites, Tech. Phys., 2009, vol. 79, no. 10, pp. 1552–1556. https://doi.org/10.1134/S1063784209100223

    Article  CAS  Google Scholar 

  12. Davies, T., Grovenor, C.R.M., and Speller, S.C., Atmospheric oxidation of NbTi superconductor, J. Alloys Compd., 2020, vol. 848, pp. 156345–156357. https://doi.org/10.1016/j.jallcom.2020.156345

    Article  CAS  Google Scholar 

  13. Delshadmanesh, M., Khatibi, G., Ghomsheh, M.Z., Lederer, M., Zehetbauer, M., and Danninger, H., Influence of microstructure on fatigue of biocompatible β-phase Ti–45Nb, Mater. Sci. Eng., A, 2017, vol. 706, pp. 83–94. https://doi.org/10.1016/j.msea.2017.08.098

    Article  CAS  Google Scholar 

  14. Mello, M.G., Dainese, B.P., Caram, R., and Cremasco, A., Influence of heating rate and aging temperature on omega and alpha phase precipitation in Ti35Nb alloy, Mater. Charact., 2018, vol. 145, pp. 268–276. https://doi.org/10.1016/j.matchar.2018.08.035

    Article  CAS  Google Scholar 

  15. Samoilenko, Z.A., Ivakhnenko, N.N., Pushenko, E.I., Pashinskaya, E.G., and Varyukhin, V.N., Diversity of the disorder and different-scale order during variations of severe deformation of copper, Phys. Solid State, 2015, vol. 57, no. 1, pp. 87–95. https://doi.org/10.1134/S1063783415010266

    Article  ADS  CAS  Google Scholar 

  16. Spuskanyuk, V.Z., Dugadko, A.B., Matrosov, N.I., and Yanchev, A.I., Differentiated allowance for strain of the material of a fiber composite matrix, Fiz. Tekh. Vys. Davl., 2001, vol. 11, no. 3, pp. 69–74.

    CAS  Google Scholar 

  17. Edalati, K. and Horita, Z., A review on high-pressure torsion (HPT) from 1935 to 1988, Mater. Sci. Eng., A, 2016, vol. 652 P, pp. 325–352. https://doi.org/10.1016/j.msea.2015.11.074

  18. Glezer, A.M., Varyukhin, V.N., Tomchuk, A.A., and Maleeva, N.A., Nature of high-angle grain boundaries in metals subjected to severe plastic deformation, Dokl. Phys., 2014, vol. 59, no. 8, pp. 360–363. https://doi.org/10.1134/S1028335814080059

    Article  ADS  CAS  Google Scholar 

  19. Belousov, N.N., In situ study of structure formation processes during deformation of materials in diamond anvils: 1. Experimental setup and procedure, Fiz. Tekh. Vys. Davl., 2006, vol. 16, no. 4, pp. 90–102.

    Google Scholar 

  20. Samoilenko, Z.A., Ivakhnenko, N.N., Pushenko, E.I., Prilipko, Yu.S., and Pashchenko, A.V., Self-organized growth of clustered structures in La0.6–xNdxSr0.3Mn1.1O3–δ doped perovskites, Inorg. Mater., 2018, vol. 54, no. 4, pp. 354–360. https://doi.org/10.1134/S0020168518040118

    Article  CAS  Google Scholar 

  21. Samoilenko, Z.A., Ivakhnenko, N.N., Pashchenko, A.V., Pashchenko, V.P., Prilipko, S.Yu., Revenko, Yu.F., and Kizel, N.G., Nanoclustering in (Nd0.7Sr0.3)1–xMn1+xO3±δ solid solutions, Inorg. Mater., 2011, vol. 47, no. 9, pp. 1019–1024. https://doi.org/10.1134/S002016851108019X

    Article  CAS  Google Scholar 

  22. Butenko, P.N., Gilyarov, V.L., Korsukov, V.E., Ankudinov, A.V., Knyazev, S.A., Korsukova, M.M., and Obidov, B.A., Changes to the surface of corrugated platinum foil under load, Phys. Solid State, 2021, vol. 63, no. 10, pp. 1619–1625. https://doi.org/10.1134/S1063783421100073

    Article  ADS  CAS  Google Scholar 

  23. Samoilenko, Z.A., Ivakhnenko, N.N., Pushenko, E.I., Shemchenko, E.I., and Varyukhin, V.N., Self-organization of dimensional and concentration diversity in a CNx:EuyOz film clusterized structure, Tech. Phys., 2020, vol. 65, pp. 305–311. https://doi.org/10.1134/S106378422002022X

    Article  CAS  Google Scholar 

  24. Kitaigorodskii, L.I., Rentgenostrukturnyi analiz melkokristallicheskikh i amorfnykh tel (X-Ray Structure Analysis of Microcrystalline and Amorphous Materials), Moscow: Nauka, 1952.

  25. Hilarov, V.L., Kinetic theory of strength and self-organized critical state in the process of fracture of materials, Phys. Solid State, 2005, vol. 47, no. 5, pp. 832–836.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Ivakhnenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilenko, Z.A., Ivakhnenko, N.N., Pushenko, E.I. et al. Self-Organization of Various-Scale Structural Groups in a Cu/NbTi Composite under the Effect of Hydrostatic Bundle Extrusion. Inorg Mater 59, 932–939 (2023). https://doi.org/10.1134/S0020168523090121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523090121

Keywords:

Navigation