Skip to main content
Log in

Thermoelectric Properties of an Extruded ZrO2-Modified Bi0.85Sb0.15 Solid Solution

  • Published:
Inorganic Materials Aims and scope

Abstract

The electrical conductivity (σ), thermoelectric power (α), Hall coefficient (RH), and thermal conductivity (κ) of unmodified and 0.5 wt % ZrO2-modified extruded samples of the Bi0.85Sb0.15 solid solution have been measured in the range ~77–300 K at a magnetic field strength of up to ~74 × 104 A/m. The results demonstrate that the addition of 0.5 wt % ZrO2 to Bi0.85Sb0.15 reduces the phonon component of its thermal conductivity, leading to an increase in its thermoelectric figure of merit (Z) to ~6.4 × 10–3 K–1. The use of the modified material is expected to considerably improve parameters of related low-temperature thermoelectric converters. At ~77 K, in both the unmodified and ZrO2-modified Bi0.85Sb0.15 solid solutions heat is transported largely by lattice vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Nemov, S.A., Ulashkevich, Yu.V., Rulimov, A.A., Demchenko, A.E., Allakhkhakh, A.A., Sveshnikov, I.V., and Jhafarov, M., On the band structure of Bi2Te3, Semiconductors, 2019, vol. 53, no. 5, pp. 603–608. https://doi.org/10.1134/S106378261905018X

    Article  ADS  CAS  Google Scholar 

  2. Bulat, L.P., Drabkin, I.A., Karataev V.V., Osvenskii, V.B., and Pshenai-Severin, D.A., Scattering effect on thermal conductivity of nanostructured semiconductor material based on BixSb2–xTe3, Phys. Solid State, 2010, vol. 52, no. 9, pp. 1836–1841. https://doi.org/10.1134/S1063783410090088

    Article  ADS  CAS  Google Scholar 

  3. Grabov, V.M., Komarov, V.A., and Kablukova, N.S., Galvanomagnetic properties of thin films of bismuth and bismuth–antimony alloys on substrates with different thermal expansions, Phys. Solid State, 2016, vol. 58, no. 3, pp. 622–628. https://doi.org/10.1134/S1063783416030136

    Article  ADS  CAS  Google Scholar 

  4. Mikio Koyano and Masanori Yamanouchi, Electronic properties of inhomogeneous Bi–Sb–Ni composite alloys, J. Phys.: Conf. Ser., 2009, vol. 150, no. 5, P. 052128. https://doi.org/10.1088/1742-6596/150/5/052128

    Article  CAS  Google Scholar 

  5. Zhi-Lei Wang, Takehiro Araki, and Tetsuhiko Onda, Effect of annealing on microstructure and thermoelectric properties of hot-extruded Bi–Sb–Te bulk materials, J. Mater. Sci., 2018, vol. 53, no. 12, pp. 9117–9130. https://doi.org/10.1007/s10853-018-2211-x

    Article  ADS  CAS  Google Scholar 

  6. Banaga, M.P., Sokolov, O.B., Benderskaya, T.E., Dudkin, L.D., Ivanova, A.B., and Fridman, I.I., Structure and thermoelectric properties of extruded Bi0.88Sb0.12, Izv. Akad. Nauk SSSR, Neorg. Mater., 1986, vol. 22, no. 4, pp. 619–622.

    CAS  Google Scholar 

  7. Ivanova, L.D., Petrova, L.I., Granatkina, Yu.V, Zemskov, V.S., Sokolov, O.B., Skipidarov, S.Ya., and Duvankov, V.I., Extruded materials for thermoelectric coolers, Inorg. Mater., 2008, vol. 44, no. 7, pp. 687–691. https://doi.org/10.1134/S0020168508070030

    Article  CAS  Google Scholar 

  8. Ivanova, L.D., Thermoelectric materials for different temperature levels, Semiconductors, 2017, vol. 51, no. 7, pp. 909–912. https://doi.org/10.1134/S1063782617070132

    Article  ADS  CAS  Google Scholar 

  9. Tagiev, M.M., Agaev, Z.F., and Abdinov, D.Sh., Thermoelectric properties of extruded Bi85Sb15, Inorg. Mater., 1994, vol. 30, no. 3, pp. 356–358.

    Google Scholar 

  10. Tagiyev, M.M., Effect of grain size and Pb doping on the thermoelectric properties of extruded samples of the Bi85Sb15 solid solution, Inorg. Mater., 2021, vol. 57, no. 2, pp. 113–118. https://doi.org/10.1134/S0020168521020138

    Article  CAS  Google Scholar 

  11. Sidorenko, N.A. and Dashevskii, Z.M., Effective Bi–Sb crystals for thermoelectric cooling at temperatures of T ≲ 180 K, Semiconductors, 2019, vol. 53, no. 5, pp. 686–690. https://doi.org/10.1134/S1063782619050245

    Article  ADS  CAS  Google Scholar 

  12. Ioffe, A.F., Poluprovodnikovye termoelementy (Semiconductor Thermoelements), Moscow: Nauka, 1960.

  13. Schwantz, R.T., Thermoelectric and galvanomagnit measurements on (Bi2Te3)5 (Bi2Se3)1 (Sb2Te3)18, J. App-l. Phys., 1967, vol. 38, no. 7, pp. 2865–2870.

    Article  ADS  Google Scholar 

  14. Rittner, E.S., Comment on theoretical bound on the thermoelectric figure of merit from irreversible thermodynamics, J. Appl. Phys., 1962, vol. 33, pp. 2654–2655.

    Article  ADS  Google Scholar 

  15. Dik, M.G. and Abdinov, D.Sh., Effect of modification on the hole mobility and thermal conductivity of extruded samples of solid solutions in the Bi2Te3–Sb2Te3 system, Izv. Akad. Nauk SSSR, Neorg. Mater., 1988, vol. 24, no. 8, pp. 1290–1293.

    CAS  Google Scholar 

  16. Dubrovina, A.N., Leont’eva, L.A., Drozdova, G.A., et al., Effect of second phase on deformation and recrystallization of Bi2Te3-based alloys, Izv. Akad. Nauk SSSR, Neorg. Mater., 1981, vol. 17, no. 4, pp. 613–617.

    CAS  Google Scholar 

  17. Dubrovina, A.I. and Kazakov, A.I., High-temperature heat treatment of extrusion billets, IB PPRV EE, 1983, no. 3 (113), pp. 99–103.

  18. Hicks, L.D. and Dresselhaus, M.S., Effect of quantum-well structures on thermoelectric figure of merit, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, vol. 47, no. 19, p. 12727. https://doi.org/10.1103/PhysRevB.47.12727

    Article  ADS  CAS  Google Scholar 

  19. Ravich, Yu.I. and Pshenai-Severin, D.A., Effect of carrier mobility on the thermoelectric efficiency of multilayer quantum well structures, in Termoelektriki i ikh primeneniya (Thermoelectrics and Their Applications), St. Petersburg, 1999, pp. 11–14.

    Google Scholar 

  20. Tagiev, M.M., Transport properties of doped Bi0.85Sb0.15 solid solutions modified with ZrO2, Inorg. Mater., 1999, vol. 35, no. 9, pp. 882–883.

    CAS  Google Scholar 

  21. Tagiyev, M.M., Abdullayeva, I.A., and Abdinova, G.D., Effect of gamma irradiation on the magnetothermoelectric properties of extruded ZrO2-modified Bi0.85Sb0.15, Inorg. Mater., 2022, vol. 58, no. 6, pp. 561–567. https://doi.org/10.1134/S0020168522060140

    Article  CAS  Google Scholar 

  22. Tagiyev, M.M. and Abdinova, G.D., Electrical and galvanomagnetic properties of extruded samples of Bi0.85Sb0.15 solid solutions with Pb and Te impurities, Russ. Phys. J., 2019, vol. 61, no. 11, pp. 2135–2138. https://doi.org/10.1007/s11182-019-01647-6

    Article  CAS  Google Scholar 

  23. Abdullaeva, I.A., Abdinova, G.D., Tagiyev, M.M., and Barkhalov, B.Sh., Effect of gamma irradiation on the electrical properties of extruded Bi85Sb15〈Te〉 samples, Inorg. Mater., 2021, vol. 57, no. 9, pp. 887–892. https://doi.org/10.1134/S0020168521090016

    Article  CAS  Google Scholar 

  24. Okhotin, A.S., Pushkarskii, A.S., Borovikov, R.P., and Simonov, V.A., Metody izmereniya kharakteristik termoelektricheskikh materialov i preobrazovatelei (Characterization of Thermoelectric Materials and Converters), Moscow: Nauka, 1974.

  25. Tagiyev, M.M. and Abdullayeva, I.A., Influence of gamma radiation on magnetoelectric properties of extruded samples of solid solution Bi85Sb15〈Te〉 modified ZrO2, Int. J. Mod. Phys., 2022, vol. 36, no. 18, p. 2250103. https://doi.org/10.1142/S021797922250103X

    Article  ADS  CAS  Google Scholar 

  26. Samedov, F.S., Tagiev, M.M., and Abdinov, D.Sh., Effect of annealing on the electrical properties of extruded Bi85Sb15, Inorg. Mater., 1997, vol. 33, no. 12, pp. 1238–1240.

    CAS  Google Scholar 

  27. Zemskov, V.S., Borodin, P.G., Belaya, A.D., and Roslov, S.A., Yavleniya perenosa v vismute i v tverdykh rastvorakh vismut–sur’ma (Transport Processes in Bismuth and Bismuth–Antimony Solid Solutions), Moscow: Inst. Metall. im A.A. Baikova Akad. Nauk SSSR, 1978.

  28. Tagiev, M.M., Agaev, Z.F., and Abdinov, D.Sh., Thermal conductivity of tellurium-doped Bi0.85Sb0.15, Neorg. Mater., 1994, vol. 30, no. 6, pp. 776–778.

    CAS  Google Scholar 

  29. Agaev, Z.F., Abdinova, G.D., Bagieva, G.Z., Tagiev, M.M., and Abdinov, D.Sh., Thermal conductivity of extruded Bi85Sb15 doped with Gd and Pb, Inorg. Mater., 2008, vol. 44, no. 2, pp. 97–99. https://doi.org/10.1134/S0020168508020027

    Article  CAS  Google Scholar 

  30. Oskotskii, V.S. and Smirnov, I.A., Defekty v kristallakh i teploprovodnost' (Structural Defects and Thermal Conductivity of Crystals), Leningrad: Nauka, 1972.

  31. Kireev, P.S., Fizika poluprovodnikov (Physics of Semiconductors), Moscow: Vysshaya Shkola, 1975.

  32. Yamashita, O. and Odahara, H., Effect of the thickness of Bi–Te compound and Cu electrode on the resultant Seebeck coefficient in touching Cu/Bi–Te/Cu composites, J. Mater. Sci., 2007, vol. 42, no. 13, pp. 5057–5067.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Tagiyev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagiyev, M.M., Abdullayeva, I.A., Abdinova, G.D. et al. Thermoelectric Properties of an Extruded ZrO2-Modified Bi0.85Sb0.15 Solid Solution. Inorg Mater 59, 805–812 (2023). https://doi.org/10.1134/S0020168523080162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523080162

Keywords:

Navigation