Skip to main content
Log in

Synthesis and Electrical Conductivity of Nanocrystalline Scandium Fluoride

  • Published:
Inorganic Materials Aims and scope

Abstract—

Phase-pure ScF3 nanocrystals (ReO3 structure, sp. gr. \(Pm\bar {3}m\)) with an average grain size of ~20 nm and unit-cell parameter a = 4.0054 ± 0.0002 Å were prepared by a mild chemical method (precipitation from aqueous ScCl3 by HF). The nanopowders were cold-pressed into ceramic compacts and their ionic conductivity was measured and determined to be 1.0 × 10–5 S/cm at 673 K. The activation energy for ion transport in the ceramics is 1.09 ± 0.05 eV. The electrical conductivity of nanocrystalline ScF3 exceeds that of microcrystalline and single-crystal scandium fluoride by 25 and 250 times, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Buchinskaya, I.I. and Sorokin, N.I., Synthesis and electrical conductivity of nanocrystalline R1−xScxF3 (R = La, Pr) solid solutions with the tysonite structure, Zh. Neorg. Khim., 2023, vol. 68, no. 7, pp. 877–884. https://doi.org/10.31857/S0044457X23600044

    Article  Google Scholar 

  2. Sorokin, N.I., Ivanovskaya, N.A., and Buchinskaya, I.I., Ionic conductivity of cold-pressed Pr0.9Pb0.1F2.9 nanoceramics prepared via mechanochemical synthesis of their components, Fiz. Tverd. Tela, 2023, vol. 65, no. 1, pp. 106–111. https://doi.org/10.21883/FTT.2023.01.53931.498

    Article  Google Scholar 

  3. Kuznetsov, S.V., Fedorov, P.P., Voronov, V.V., Samarina, K.S., and Osiko, V.V., Synthesis of Ba4R3F17 (R stands for rare-earth elements) powders and transparent compacts on their base, Russ. J. Inorg. Chem., 2010, vol. 55, no. 4, pp. 484–493.

    Article  CAS  Google Scholar 

  4. Sorokin, N.I., Ivanovskaya, N.A., and Sobolev, B.P., Ionic conductivity of cold-pressed ceramics from grinding of R0.95M0.05F2.95 solid electrolytes (R = La, Nd; M = Ca, Sr, Ba) synthesized by reaction in melt, Crystallogr. Rep., 2014, vol. 59, no. 2, pp. 248–251. https://doi.org/10.1134/S1063774514020254

    Article  ADS  CAS  Google Scholar 

  5. Garashina, L.S., Sobolev, B.P., Aleksandrov, V.B., and Vishnyakov, Yu.S., On the crystal chemistry of rare-earth fluorides, Kristallografiya, 1980, vol. 25, no. 2, pp. 294–300.

    CAS  Google Scholar 

  6. Bolotina, N.B., Chernaya, T.S., Verin, I.A., Khrykina, O.N., and Sobolev, B.P., Dimorphism of RF3 (R = La–Nd) crystals based on the data of X-ray diffraction studies, Crystallogr. Rep., 2016, vol. 61, no. 1, pp. 36–41. https://doi.org/10.1134/S1063774516010041

    Article  ADS  CAS  Google Scholar 

  7. Spedding, F.H., Beaudry, B.J., Henderson, D.C., and Moorman, J., High-temperature enthalpies and related thermodynamic functions of the trifluorides of Sc, Ce, Sm, Eu, Gd, Tb, Dy, Er, Tm, and Yb, J. Chem. Phys., 1974, vol. 60, no. 4, pp. 1578–1588.

    Article  ADS  CAS  Google Scholar 

  8. Karimov, D., Buchinskaya, I., Arkharova, N., Prosekov, P., Grebenev, V., Sorokin, N., Glushkova, T., and Popov, P., Growth from the melt and properties investigation of ScF3, Crystals, 2019, vol. 9, pp. 371–387. https://doi.org/10.3390/cryst9070371

    Article  CAS  Google Scholar 

  9. Sorokin, N.I., Karimov, D.N., Grebenev, V.V., and Sobolev, B.P., Ionic conductivity of ScF3 single crystals (ReO3 type), Crystallogr. Rep., 2016, vol. 61, no. 2, pp. 270–274. doi 1134/S1063774516020267

  10. Fedorov, P.P., Trnovtcova, V., Kocherba, G.I., and Sobolev, B.P., Ionic conductivity and dielectric relaxation of scandium fluoride, Kristallografiya, 1995, vol. 40, no. 4, pp. 716–720.

    CAS  Google Scholar 

  11. Sorokin, N.I. and Sobolev, B.P., Fluorine-ion conductivity of different technological forms of solid electrolytes R 1–y M yF3–y (LaF3 type) (M = Ca, Sr, Ba; R are rare earth elements), Crystallogr. Rep., 2016, vol. 61, no. 3, pp. 499–505. https://doi.org/10.1134/S1063774516020279

    Article  ADS  CAS  Google Scholar 

  12. Patro, L.N., Role of mechanical milling on the synthesis and ionic transport properties of fast fluoride ion conducting materials, J. Solid State Electrochem., 2020, vol. 24, pp. 2219–2232. https://doi.org/10.1007/s10008-020-04769-x

    Article  CAS  Google Scholar 

  13. Puin, W., Rodewald, S., Ramlau, R., Heitjans, P., and Maier, J., Local and overall ionic conductivity in nanocrystalline CaF2, Solid State Ionics, 2000, vol. 131, nos. 1–2, pp. 159–164.

    Article  CAS  Google Scholar 

  14. Gaurkhede, G.S., Synthesis and studies room temperature conductivity, dielectric analysis of LaF3 nanocrystals, Nanosyst.: Phys. Chem. Math., 2014, vol. 5, no. 6, pp. 843–848.

    Google Scholar 

  15. Patro, L.N., Bharathi, K.K., and Raju, N.R.C., Microstructural and ionic transport studies of hydrothermally synthesized lanthanum fluoride nanoparticles, AIP Adv., 2014, vol. 4, p. 127139. https://doi.org/10.1063/1.4904949

    Article  ADS  CAS  Google Scholar 

  16. Breuer, S., Gombotz, M., Pregartner, V., Hanzu, I., Martin, H., and Wilkening, R., Heterogeneous F anion transport, local dynamics and electrochemical stability of nanocrystalline La1–xBaxF3–x , Energy Storage Mater., 2019, vol. 16, pp. 481–503. https://doi.org/10.1016/j.ensm.2018.10.010

    Article  Google Scholar 

  17. Breuer, S., Lunghammer, S., Kiesl, A., and Wilkening, M., F anion dynamics in cation-mixed nanocrystalline LaF3 : SrF2, J. Mater. Sci., 2018, vol. 53, pp. 13669–13681. https://doi.org/10.1007/s10853-018-2361-x

    Article  ADS  CAS  Google Scholar 

  18. Chable, J., Martin, A.G., Bourdin, A., Legein, C., Jouanneaux, A., Crosuier-Lopez, M.P., Galven, C., Pieudonne, B., Leblanc, M., Demourgnes, A., and Maisonneuve, V., Fluoride solid electrolytes: from microcrystalline to nanostructured tysonite-type La0.95Ba0.05F2.95, J. Alloys Compd., 2017, vol. 692, pp. 980–988. https://doi.org/j.jallcom.2016.09.135

  19. Duvel, A., Bendarcik, J., Sepelak, V., and Heitjans, P., Mechanosynthesis of the fast fluoride ion conductor BaLaF – from the fluorite to the tysonite structure, J. Phys. C, 2014, vol. 118, no. 13, pp. 7117–7129. https://doi.org/10.1021/JP410018T

    Article  Google Scholar 

  20. Mayakova, M.N., Kuznetsov, S.V., Voronov, V.V., Baranchikov, A.E., Ivanov, V.K., and Fedorov, P.P., Soft chemistry synthesis of powders in the BaF2–ScF3 system, Russ. J. Inorg. Chem., 2014, vol. 59, no. 7, pp. 773–777. https://doi.org/10.1134/S003602361407016X

    Article  CAS  Google Scholar 

  21. Fedorov, P.P., Luginina, A.A., Kuznetsov, S.V., and Osiko, V.V., Nanofluorides, J. Fluorine Chem., 2011, vol. 132, pp. 1012–1039.

    Article  CAS  Google Scholar 

  22. Mayakova, M.N., Kuznetsov, S.V., Fedorov, P.P., Voronov, V.V., Ermakov, R.P., Boldyrev, K.N., Karban’, O.V., Uvarov, O.V., Baranchikov, A.E., and Osiko, V.V., Synthesis and characterization of fluoride xerogels, Inorg. Mater., 2013, vol. 49, no. 11, pp. 1152–1156. https://doi.org/10.1134/S0020168513110101

    Article  CAS  Google Scholar 

  23. Kuznetsov, S.V., Osiko, V.V., Tkachenko, E.A., and Fedorov, P.P., Inorganic nanofluorides and nanocomposites based on them, Usp. Khim., 2006, vol. 75, no. 12, pp. 1193–1211.

    Article  Google Scholar 

  24. Boultifand, A. and Louer, D., Powder pattern indexing with the dichotomy method, J. Appl. Crystallogr., 2004, vol. 37, pp. 724–731. https://doi.org/10.1107/S0021889804014876

    Article  ADS  CAS  Google Scholar 

  25. Petricek, V., Dusek, M., and Palatinus, L., Crystallographic computing system JANA2006: general features, Z. Kristallogr. – Cryst. Mater., 2014, vol. 229, pp. 345–352. https://doi.org/10.1515/zkri-2014-1737

    Article  CAS  Google Scholar 

  26. Boldyrev, V.V., Eksperimental’nye metody v mekhanokhimii tverdykh neorganicheskikh veshchestv (Experimental Methods in Mechanochemistry of Inorganic Solids), Novosibirsk: Nauka, 1983.

  27. Ivanov-Shits, A.K., Sorokin, N.I., Fedorov, P.P., and Sobolev, B.P., Electrical conductivity of Sr1–xLaxF2+x (0.03 ≤ x ≤ 0.40) solid solutions, Fiz. Tverd. Tela (Leningrad), 1983, vol. 25, pp. 1748–1753.

    CAS  Google Scholar 

  28. Aleksandrov, K.S., Voronov, A.N., Vtyurin, A.N., Krylov, A.S., Molokeev, M.S., Pavlovskii, M.S., Goryainov, S.V., Likhacheva, A.N., and Ancharov, A.I., Pressure-induced phase transition in the Cubic ScF3 crystal, Phys. Solid State, 2009, vol. 51, no. 4, pp. 810–816.

    Article  ADS  CAS  Google Scholar 

  29. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, and Nanotechnologies), Moscow: Fizmatlit, 2005.

  30. Fedorov, P.P., Kuznetsov, S.V., Mayakova, M.N., Voronov, V.V., Ermakov, R.P., Baranchikov, A.E., and Osiko, V.V., Coprecipitation from aqueous solutions to prepare binary fluorides, Russ. J. Inorg. Chem., 2011, vol. 56, no. 10, pp. 1525–1531.

    Article  CAS  Google Scholar 

  31. Achary, K.R., Rao, Y.B., and Patro, L.N., Structural and transport properties of mechanochemically synthesized La0.9Ba0.1F2.9 and La0.9Ba0.05Ca0.05F2.9, Mater. Lett., 2021, vol. 301, p. 130337. https://doi.org/10.1016/j.matlet.2021.130337

    Article  CAS  Google Scholar 

  32. Murin, I.V., Glumov, O.V., and Amelin, Yu.V., Mechanism of ion transport in LaF3, Zh. Prikl. Chem., 1980, vol. 53, no. 7, pp. 1474–1478.

    CAS  Google Scholar 

  33. Sorokin, N.I., Smirnov, A.N., Fedorov, P.P., and Sobolev, B.P., Superionic fluoride ceramics RF3 and R0.95 M 0.05F2.95 (R = La, Ce, Pr, Nd) prepared by hot pressing, Russ. J. Electrochem., 2009, vol. 45, no. 5, pp. 606–608.

    Article  CAS  Google Scholar 

  34. Sorokin, N.I., Fominykh, M.V., Krivandina, E.A., Zhmurova, Z.I., and Sobolev, B.P., Ion transport in R 1–xSrxF3–x (R = La–Yb, Y) solid solutions with a LaF3 (tysonite) structure, Crystallogr. Rep., 1996, vol. 41, no. 2, pp. 292–301.

    ADS  Google Scholar 

  35. Aliev, A.E., Transport properties of superionic crystals with the tysonite structure, Elektrokhimiya, 1990, vol. 26, no. 1, pp. 79–81.

    CAS  Google Scholar 

  36. Buchinskaya, I.I., Teplyakova, T.O., Sorokin, N.I., and Karimov, D.N., Composition materials in the CaF2–BaF2 system, Crystallogr. Rep., 2023, vol. 68, no. 2, pp. 316–322. https://doi.org/10.1134/S1063774523020050

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Shared Research Facilities Center, Federal Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education as part of the state research target for the Crystallography and Photonics Federal Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sorokin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, N.I., Buchinskaya, I.I. Synthesis and Electrical Conductivity of Nanocrystalline Scandium Fluoride. Inorg Mater 59, 858–865 (2023). https://doi.org/10.1134/S0020168523080150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523080150

Keywords:

Navigation