Skip to main content
Log in

Synthesis of MgAl2O4 Spinel in a Thermal Plasma

  • Published:
Inorganic Materials Aims and scope

Abstract—

In this paper, we report an experimental study concerned with the synthesis of MgAl2O4 spinel via plasma-assisted melting of powder components at an Al2O3/MgO weight ratio varied from 1 to 4. The presence of excess Al2O3 in the starting mixture has been shown to cause the characteristic Bragg peak 111 (~65°) of crystalline MgAl2O4 to shift to larger 2θ angles and broaden. According to scanning electron microscopy results, the surface microstructure of the synthesized materials is formed by densely packed octahedral stoichiometric MgAl2O4 crystals ranging in size from 10 to 500 μm. The materials have been found to contain local regions that allow the dynamics of crystal growth during melt solidification to be examined. The proposed spinel synthesis method can find application in the fabrication of small thermally stable parts by casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Chenguang, L., Yuhong, L., Tan, S., Qing, P., and Fei, G., Oxygen defects stabilize the crystal structure of MgAl2O4 spinel under irradiation, J. Nucl. Mater., 2019, vol. 527, p. 151830. https://doi.org/10.1016/j.jnucmat.2019.151830

    Article  CAS  Google Scholar 

  2. Masoud, A.M. and Rasoul, S.M., Devising a novel method of producing high transparent magnesium aluminate spinel (MgAl2O4) ceramics body using synthesized LiF nanopowder and spark plasma sintering, Mater. Chem. Phys., 2020, vol. 250, p. 123035. https://doi.org/10.1016/j.matchemphys.2020.123035

    Article  CAS  Google Scholar 

  3. Soumen, P., Bandyopadhyay, A.K., Pal, P.G., Mukherjee, S., and Samaddar, B.N., Sintering behaviour of spinel–alumina composites, Bull. Mater. Sci., 2009, vol. 32, no. 2, pp. 169–176. https://doi.org/10.1007/s12034-009-0026-8

    Article  Google Scholar 

  4. Emre, Y., Claude, C., and Sedat, A., Microstructural development of interface layers between co-sintered alumina and spinel compacts, J. Eur. Ceram. Soc., 2011, vol. 31, pp. 1649–1659. https://doi.org/10.1016/j.jeurceramsoc.2011.03.020

    Article  CAS  Google Scholar 

  5. Buchilin, N.V., Lyulyukina, G.Yu., and Varrik, N.M., Effect of annealing conditions on the structure and properties of highly porous materials based on magnesium aluminate spinel, Nov. Ogneupory, 2019, no. 1, pp. 37–42. https://doi.org/10.17073/1683-4518-2019-1-37-42

  6. Filatova, N.V., Kosenko, N.F., and Glazkov, M.A., Sintering of periclase with a brucite–aluminophosphate binder, Steklo Keram., 2020, no. 9, pp. 16–20.

  7. Ul’yanova, A.V., Senina, M.O., and Lemeshev, D.O., Preparation of dense ceramics based on aluminum–magnesium spinel by forming solid solutions in the MgAl2O4–Ga2O3 system, Russ. J. Inorg. Chem., 2021, vol. 66, no. 8, pp. 1245–1251. https://doi.org/10.1134/S0036023621080301

    Article  Google Scholar 

  8. Ko, Y.-C., Influence of the characteristics of spinels on the slagresistance of Al2O3·MgO and Al2O3-spinel castables, J. Am. Ceram. Soc., 2004, vol. 83, no. 9, pp. 2333–2335. https://doi.org/10.1111/j.1151-2916.2000.tb01559.x

    Article  Google Scholar 

  9. Radishevskaya, N.I., Nazarova, A.Yu., L’vov, O.V., Kasatskii, N.G., Salamatov, V.G., Saikov, I.V., and Kovalev, D.Yu., Self-propagating high-temperature synthesis of MgAl2O4 spinel, Inorg. Mater., 2020, vol. 56, no. 2, pp. 142–150. https://doi.org/10.1134/S0020168520010112

    Article  CAS  Google Scholar 

  10. Senina, M.O., Lemeshev, D.O., Vershinin, D.I., Boiko, A.V., and Pedchenko, M.S., Effect of B2O3 concentration on the properties of transparent magnesium aluminate spinel ceramics, Inorg. Mater., 2019, vol. 55, no. 8, pp. 846–950. https://doi.org/10.1134/S0020168519080144

    Article  CAS  Google Scholar 

  11. Gol’eva, E.V., Dunaev, A.A., Chmel’, A.E., and Shcherbakov, I.P., Effect of doping with chromium oxide on the nature of point impact microdamage in MgAl2O4 ceramics, Inorg. Mater., 2021, vol. 57, no. 4, pp. 421–426. https://doi.org/10.1134/S0020168521030055

    Article  Google Scholar 

  12. Yanqiu, J., Qiang, L., Xinyu, M., Sha, S., Xiaoying, L., Xin, L., Tengfei, X., and Jiang, L., Influence of presintering temperature on magnesium aluminate spinel transparent ceramics fabricated by solid-state reactive sintering, Int. J. Appl. Ceram. Technol., 2022, vol. 19, pp. 367–374. https://doi.org/10.1111/ijac.13888

    Article  CAS  Google Scholar 

  13. Slotznick, S.P. and Shim, S.-H., In situ Raman spectroscopy measurements of MgAl2O4 spinel up to 1400°C, Am. Mineral., 2008, vol. 93, pp. 470–476. https://doi.org/10.2138/am.2008.2687

    Article  ADS  CAS  Google Scholar 

  14. Osipov, V.V., Solomonov, V.I., Platonov, V.V., et al., Synthesis of Fe:MgAl2O4 nanopowders into laser plum, Int. Res. J., 2018, vol. 8, no. 74, pp. 32–39. https://doi.org/10.23670/IRJ.2018.74.8.005

    Article  Google Scholar 

  15. Shekhovtsov, V.V., Skripnikova, N.K., Volokitin, O.G., and Gafarov, R.E., Influence of thermal plasma energy on phase transitions of nanodispersed silicon dioxide, Glass Phys. Chem., 2022, vol. 48, no. 5, pp. 410–413. https://doi.org/10.1134/S1087659622600272

    Article  CAS  Google Scholar 

  16. Shekhovtsov, V.V., Volokitin, O.G., Ushkov, V.A., and Zorin, D.A., Obtaining glass ceramics of the MgO-SiO2 system by the plasma melting method, Tech. Phys. Lett., 2022, vol. 48, no. 12, pp. 52–55. https://doi.org/10.21883/TPL.2022.12.54948.19278

    Article  Google Scholar 

  17. Skripnikova, N.K., Volokitin, O.G., Shekhovtsov, V.V., and Semenovykh, M.A., Plasma synthesis of anorthite, Izv. Vyssh. Uchebn. Zaved.: Fiz., 2022, vol. 65, no. 6 (775), pp. 139–144. https://doi.org/10.17223/00213411/65/6/139

  18. Shekhovtsov, V.V., Skripnikova, N.K., and Ulmasov, A.B., Synthesis of MgAl2O3 magnesium aluminate spinel in a thermal plasma, Vestn. Tomsk. Gos. Arkhitekt-Stroit. Univ., 2022, vol. 24, no. 3, pp. 138–146. https://doi.org/10.31675/1607-1859-2022-24-3-138-146

    Article  Google Scholar 

  19. Mohapatra, D. and Sarkar, D., Preparation of MgO–MgAl2O4 composite for refractory application, J. Mater. Process. Technol., 2007, vol. 189, pp. 279–283. https://doi.org/10.1016/j.jmatprotec.2007.01.037

    Article  CAS  Google Scholar 

  20. Belogurova, O.A., Savarina, M.A., and Sharai, T.V., Forsterite concentrate refractories from the Kovdor Mining and Processing Integrated Plant, Tr. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, 2018, vol. 9, no. 2-2, pp. 808–814. https://doi.org/10.25702/KSC.2307-5252.2018.9.1.808-814

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Tomsk Shared Materials Research Instrumentation Center, a part of the Tomsk Regional Shared Instrumentation Center, Tomsk State University.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target no. FEMN-2023-0003) and the Russian Federation President’s Grants Council (grant no. MK-66.2022.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shekhovtsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhovtsov, V.V., Skripnikova, N.K. & Ulmasov, A.B. Synthesis of MgAl2O4 Spinel in a Thermal Plasma. Inorg Mater 59, 851–857 (2023). https://doi.org/10.1134/S0020168523080149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523080149

Keywords:

Navigation