Skip to main content
Log in

Influence of the Evaporation Temperature and Degree of Distillation on the Effective Separation Factor

  • Published:
Inorganic Materials Aims and scope

Abstract—

We demonstrate the conceptual feasibility of step-by-step calculation of the effective separation factor β in distillation and sublimation processes as a function of the evaporation temperature T and degree of distillation g. The variation of β with T and g is thought to stem from the influence of T and g on the impurity distribution over the vaporizing material. The β(T) and β(g) dependences can be found using the Burton–Prim–Slichter equation and calculated impurity distributions in the vaporizing material at particular parameters of the substance and material. We present examples of such calculations for a beryllium-based model material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. King, C.J., Separation Processes, New York: Dover, 2013, 2nd ed.

    Google Scholar 

  2. Devyatykh, G.G. and Elliev, Yu.E., Glubokaya ochistki veshchestv (Ultrapurification of Substances), Moscow: Vysshaya Shkola, 1990.

  3. Dytnerskii, Yu.I., Protsessy i apparaty khimicheskoi tekhnologii (Processes and Apparatuses of Chemical Technology), part 2: Massoobmennye protsessy i apparaty (Mass Exchange Processes and Apparatuses), Moscow: Khimiya, 1995, 2nd ed.

  4. Niselson, L.A. and Yaroshevsky, A.G., Mezhfazovye koeffitsienty raspredeleniya. Ravnovesiya kristall–zhidkost' i zhidkost'–par (Distribution Coefficients: Crystal–Melt and Melt–Vapor Equilibria), Moscow: Nauka, 1992.

  5. Kirillov, Yu.P., Kuznetsov, L.A., Shaposhnikov, V.A., and Churbanov, M.F., Effect of diffusion on the purification of substances by distillation, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1092–1096. https://doi.org/10.1134/S0020168515100088

    Article  CAS  Google Scholar 

  6. Zhukov, A.I. and Kravchenko, A.I., Calculation of sublimation with allowance for impurity diffusion, Inorg. Mater., 2017, vol. 53, no. 6, pp. 648–653. https://doi.org/10.1134/S0020168517060164

    Article  CAS  Google Scholar 

  7. Kravchenko, A.I. and Zhukov, A.I., Temperature dependence of the diffusional Peclet number in sublimation of some simple substances, Inorg. Mater., 2021, vol. 57, no. 7, pp. 753–759. https://doi.org/10.1134/S0020168521070104

    Article  CAS  Google Scholar 

  8. Kravchenko, A.I., Zhukov, A.I., and Datsenko, O.A., Temperature dependences of the Peclet number in sublimation processes of simple substances, Probl. At. Sci. Technol., 2022, no. 1, pp. 13–16. https://vant.kipt.kharkov.ua/.

  9. Kravchenko, A.I. and Zhukov, A.I., Separation factors and Peclet numbers in evaporation refining of elemental substances near their melting point, Inorg. Mater., 2022, vol. 58, no. 8, pp. 860–865. https://doi.org/10.1134/S0020168522080076

    Article  CAS  Google Scholar 

  10. Pazukhin, V.A. and Fisher, A.Ya., Razdelenie i rafinirovanie metallov v vakuume (Separation and Refining of Metals in Vacuum), Moscow: Metallurgiya, 1969.

  11. Nesmeyanov, A.N., Davlenie para khimicheskikh elementov (Vapor Pressure of Chemical Elements), Moscow: Akad. Nauk SSSR, 1961.

  12. Barthel, J., Buhrig, E., Hein, K., and Kuchar, L., Kristallisation aus Schmelzen, Leipzig: Grundstoffindustrie, 1983.

    Google Scholar 

  13. Burton, J.A., Prim, R.C., and Slichter, W.P., The distribution of solute in crystals growth from the melt. 1. Theoretical, J. Chem. Phys., 1953, vol. 21, no. 11, pp. 1987–1991.

    Article  ADS  CAS  Google Scholar 

  14. Burton, J.A., Prim, R.C., and Slichter, W.P., The distribution of solute in crystals growth from the melt. 1. Theoretical, Germanii (Germanium), Petrov, D.A., Ed., Moscow: Inostrannaya Literatura, 1955, pp. 74–81.

    Google Scholar 

  15. Ostrogorsky, A.G., Film thickness and convection coefficient formulations of k eff, J. Serb. Soc. Comput. Mech., 2012, vol. 6, no. 1, pp. 97–107. http://www.sscm.kg.ac.rs/jsscm/downloads/Vol6No1/Vol6No1_07.pdf.

    Google Scholar 

  16. Ostrogorsky, A.G., Empirical correlations for natural convection, Δ and k eff, J. Cryst. Growth, 2015, vol. 426, pp. 38–48.

    Article  ADS  CAS  Google Scholar 

  17. Voloshin, A.E., Prostomolotov, A.I., and Verezub, N.A., On the accuracy of analytical models of impurity segregation during directional melt crystallization and their applicability for quantitative calculations, J. Cryst. Growth, 2016, vol. 453, pp. 188–197.

    Article  ADS  CAS  Google Scholar 

  18. Bokshtein, B.S. and Yaroslavtsev, A.B., Diffuziya atomov i ionov v tverdykh telakh (Diffusion of Atoms and Ions in Solids), Moscow: Mosk. Inst. Stali i Splavov, 2005.

  19. Bagotskii, V.S., Diffusion layer, in Fizicheskii entsiklopedicheskii slovar' (Physical Encyclopedic Dictionary), Moscow: Sovetskaya Entsiklopediya, 1960, vol. 1, p. 621.

  20. Bagotskii, V.S., Osnovy elektrokhimiii (Fundamentals of Electrochemistry), Moscow: Khimiya, 1988.

  21. Papirov, I.I., Kravchenko, A.I., Mazin, A.I., Shiyan, A.V., and Virich, V.D., Impurity distributions in a magnesium sublimates, Probl. At. Sci. Technol., 2016, no. 1, pp. 21–22. https://vant.kipt.kharkov.ua/.

  22. Kravchenko, A.I., Relationship between effective and ideal separation factors for distillation and sublimation, Inorg. Mater., 2016, vol. 52, no. 4, pp. 378–385. https://doi.org/10.1134/S0020168516040099

    Article  CAS  Google Scholar 

  23. Vorotyntsev, V.M., Mochalov, G.M., Trubyanov, M.M., and Shablykin, D.N., Temperature dependence of the separation factor in the batch distillation of ammonia between the normal boiling point and the critical temperature, Theor. Found. Chem. Eng., 2014, vol. 48, no. 1, pp. 55–59. https://doi.org/10.1134/S0040579514010151

    Article  CAS  Google Scholar 

  24. Kravchenko, A.I., Influence of the degree of distillation on the effective separation factor in some metallic host–impurity systems, Inorg. Mater., 2015, vol. 51, no. 2, pp. 106–107. https://doi.org/10.1134/S0020168515010094

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kravchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, A.I., Zhukov, A.I. Influence of the Evaporation Temperature and Degree of Distillation on the Effective Separation Factor. Inorg Mater 59, 883–888 (2023). https://doi.org/10.1134/S0020168523080083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523080083

Keywords:

Navigation