Skip to main content
Log in

Chemical Processes of the Formation of Copper(I) Oxide on Copper Foil under Hydrothermal Conditions

  • Published:
Inorganic Materials Aims and scope

Abstract—

In this paper, we study the nucleation and growth of a copper(I) oxide layer during hydrothermal treatment of copper foil in an alkaline solution. Experimental (X-ray diffraction and scanning electron microscopy) data, Gibbs free energy calculations, and analysis of the growth process in terms of the Cabrera–Mott approach lead us to conclude that the hydroxide anion and dissolved oxygen concentrations play a key role in determining the phase composition and morphology of the hydrothermal treatment product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Navarro, R.M., del Valle, F., Villoria de la Mano, J.A., Álvarez-Galván, M.C., and Fierro, J.L.G., Photocatalytic water splitting under visible light. Concept and catalysts development, Adv. Chem. Eng., 2009, vol. 36, no. 9, pp. 111–143. https://doi.org/10.1016/S0065-2377(09)00404-9

    Article  CAS  Google Scholar 

  2. Baran, T., Visibile, A., Busch, M., He, X., Wojtyla, S., Rondinini, S., Minguzzi, A., and Vertova, A., Copper oxide-based photocatalysts and photocathodes: fundamentals and recent advances, Molecules, 2021, vol. 26, no. 23, p. 7271. https://doi.org/10.3390/molecules26237271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zimbovskii, D.S. and Baranov, A.N., Synthesis of Cu2O-based heterostructures and their photocatalytic properties for water splitting, Inorg. Mater., 2020, vol. 56, no. 4, pp. 366–373. https://doi.org/10.1134/S0020168520040159

    Article  CAS  Google Scholar 

  4. Bijani, S., Schrebler, R., Dalchiele, E.A., Gabás, M., Martínez, L., and Ramos-Barrado, J.R., Study of the nucleation and growth mechanisms in the electrodeposition of micro- and nanostructured Cu2O thin films, J. Phys. Chem. C, 2011, vol. 115, no. 43, pp. 21373–21382. https://doi.org/10.1021/jp208535e

    Article  CAS  Google Scholar 

  5. Halin, D.S.C., Talib, I.A., Daud, A.R., and Hamid, M.A.A., Characterizations of cuprous oxide thin films prepared by sol–gel spin coating technique with different additives for the photoelectrochemical solar cell, Int. J. Photoenergy, 2014, vol. 2014, p. 352156. https://doi.org/10.1155/2014/352156

    Article  CAS  Google Scholar 

  6. Deo, M. and Ogale, S., Crystal facet control for the stability of p-Cu2O nanoneedles as photocathode for photoelectrochemical activity, Mater. Today Proc., 2018, vol. 5, no. 11, pp. 23482–23489. https://doi.org/10.1016/j.matpr.2018.11.092

    Article  CAS  Google Scholar 

  7. Jin, Z., Hu, Z., Yu, J.C., and Wang, J., Room temperature synthesis of a highly active Cu/Cu2O photocathode for photoelectrochemical water splitting, J. Mater. Chem. A, 2016, vol. 4, no. 36, pp. 13736–13741. https://doi.org/10.1039/C6TA05274F

    Article  CAS  Google Scholar 

  8. Pan, L., Zou, J.-J., Zhang, T., Wang, S., Li, Z., Wang, L., and Zhang, X., Cu2O film via hydrothermal redox approach: morphology and photocatalytic performance, J. Phys. Chem. C, 2014, vol. 118, no. 30, pp. 16335–16343. https://doi.org/10.1021/jp408056k

    Article  CAS  Google Scholar 

  9. Zimbovskii, D.S. and Churagulov, B.R., Cu2O and CuO films produced by chemical and anodic oxidation on the surface of copper foil, Inorg. Mater., 2018, vol. 54, no. 7, pp. 660–666. https://doi.org/10.1134/S0020168518070208

    Article  CAS  Google Scholar 

  10. Zimbovskiy, D.S., Gavrilov, A.I., and Churagulov, B.R., Synthesis of copper oxides films via anodic oxidation of copper foil followed by thermal reduction, IOP Conf. Ser. Mater. Sci. Eng., 2018, vol. 347, p. 012010. https://doi.org/10.1088/1757-899X/347/1/012010

  11. Zimbovskii, D.S., Churagulov, B.R., and Baranov, A.N., Hydrothermal Synthesis of Cu2O films on the surface of metallic copper in a NaOH solution, Inorg. Mater., 2019, vol. 55, no. 6, pp. 582–585. https://doi.org/10.1134/S0020168519060177

    Article  CAS  Google Scholar 

  12. Zimbovskii, D.S. and Baranov, A.N., One-step hydrothermal surface oxidation of copper foil for photocatalytic water splitting, IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 525, p. 012018. https://doi.org/10.1088/1757-899X/525/1/012018

  13. Spravochnik po elektrokhimii (Handbook of Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.

    Google Scholar 

  14. Bratsch, S.G., Standard electrode potentials and temperature coefficients in water at 298.15 K, J. Phys. Chem. Ref. Data, 1989, vol. 18, no. 1, pp. 1–21. https://doi.org/10.1063/1.555839

    Article  CAS  Google Scholar 

  15. Pabalan, R.T. and Pitzer, K.S., Thermodynamics of NaOH(aq) in hydrothermal solutions, Geochim. Cosmochim. Acta, 1987, vol. 51, no. 4, pp. 829–837. https://doi.org/10.1016/0016-7037(87)90096-2

    Article  CAS  Google Scholar 

  16. Tromans, D., Modeling oxygen solubility in water and electrolyte solutions, Ind. Eng. Chem. Res., 2000, vol. 39, no. 3, pp. 805–812. https://doi.org/10.1021/ie990577t

    Article  CAS  Google Scholar 

  17. Tromans, D., Oxygen solubility modeling in inorganic solutions: concentration, temperature and pressure effects, Hydrometallurgy, 1998, vol. 50, no. 3, pp. 279–296. https://doi.org/10.1016/S0304-386X(98)00060-7

    Article  CAS  Google Scholar 

  18. Palmer, D.A., Solubility measurements of crystalline Cu2O in aqueous solution as a function of temperature and pH, J. Solution Chem., 2011, vol. 40, no. 6, pp. 1067–1093. https://doi.org/10.1007/s10953-011-9699-x

    Article  CAS  Google Scholar 

  19. Palmer, D.A., The solubility of crystalline cupric oxide in aqueous solution from 25°C to 400°C, J. Chem. Thermodyn., 2017, vol. 114, pp. 122–134. https://doi.org/10.1016/j.jct.2017.03.012

    Article  CAS  Google Scholar 

  20. Giri, S.D. and Sarkar, A., Electrochemical study of bulk and monolayer copper in alkaline solution, J. Electrochem. Soc., 2016, vol. 163, no. 3, pp. I1252–I1259. https://doi.org/10.1149/2.0071605jes

    Article  CAS  Google Scholar 

  21. Cabrera, N. and Mott, N.F., Theory of the oxidation of metals, Rep. Prog. Phys., 1949, vol. 12, no. 1, pp. 163–184. https://doi.org/10.1088/0034-4885/12/1/308

    Article  CAS  Google Scholar 

  22. Zhuk, N.P., Kurs teorii korrozii i zashchity metallov (A Theoretical Course in Metal Corrosion and Protection), Moscow: Metallurgiya, 1976.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Baranov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimbovskii, D.S., Baranov, A.N. Chemical Processes of the Formation of Copper(I) Oxide on Copper Foil under Hydrothermal Conditions. Inorg Mater 59, 749–756 (2023). https://doi.org/10.1134/S0020168523070166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523070166

Keywords:

Navigation