Skip to main content
Log in

BiFe2(PO4)3 Ceramics: Fabrication by Hot Pressing and Spark Plasma Sintering, Thermal Conductivity, and Thermal Diffusivity

  • Published:
Inorganic Materials Aims and scope

Abstract

BiFe2(PO4)3 ceramic powder with controlled chemical and phase compositions has been prepared by evaporation of the salt solution, followed by heat treatment. The powder was consolidated by hot pressing and spark plasma sintering, which allowed high-density (92–98%) BiFe2(PO4)3 ceramics with the α-CaMg2(SO4)3 structure to be obtained. Their thermal diffusivity was investigated by the laser flash method in the range 298–573 K, and the thermal conductivity of the high-density (98%) ceramic was determined. Its thermal conductivity was shown to decrease with increasing temperature. The thermal diffusivity and thermal conductivity (0.9–1.4 W/(m K)) of the BiFe2(PO4)3 ceramics demonstrate that they are heat insulators with high working temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Pet’kov, V.I., Dorokhova, G.I., and Orlova, A.I., Architecture of phosphates with {[L2(PO4)3]p}3∞ frameworks, Crystallogr. Rep., 2001, vol. 46, no. 1. pp. 69–74. https://doi.org/10.1134/1.1343130

    Article  Google Scholar 

  2. Singh, B., Wang, Z., Park, S., Gautam, G.S., Chotard, J.N., Croguennec, L., Carlier, D., Cheetham, A.K., Masquelier, C., and Canepa, P., A chemical map of NaSiCON electrode materials for sodium-ion batteries, J. Mater. Chem. A, 2021, vol. 9, no. 1, pp. 281–292. https://doi.org/10.1039/D0TA10688G

    Article  CAS  Google Scholar 

  3. Yang, Z., Tang, B., Xie, Z., and Zhou, Z., NASICON-type Na3Zr2Si2PO12 solid-state electrolytes for sodium batteries, ChemElectroChem, 2021, vol. 8, no. 6, pp. 1035–1047. https://doi.org/10.1002/celc.202001527

    Article  CAS  Google Scholar 

  4. Balaji, D., Mandlimath, T.R., Chen, J., Matsushita, Y., and Kumar, S.P., Langbeinite phosphates KPbM2(PO4)3 (M = Cr, Fe): synthesis, structure, thermal expansion, and magnetic properties investigation, Inorg. Chem., 2020, vol. 59, no. 18, p. 13245. https://doi.org/10.1021/acs.inorgchem.0c01597

    Article  CAS  PubMed  Google Scholar 

  5. Ding, J., Zhu, P., Li, Z., Wang, Z., Ai, L., Zhao, J., Yu, F., Duan, X., and Jiang, H., Synthesis, electronic structure and upconversion photoluminescence of langbeinite-type K2TiYb(PO4)3 microcrystals, Optic, 2021, vol. 244, p. 167549. https://doi.org/10.1016/j.ijleo.2021.167549

    Article  CAS  Google Scholar 

  6. Pet’kov, V.I. and Lavrenov, D.A., RF Patent 2758257, Byull. Izobret., Polezn. Modeli, 2021, no. 30.

  7. Weil, M., Single crystal growth of CaMg2(SO4)3 via solid-/gas-phase reactions and its Nasicon-related crystal structure, Cryst. Res. Technol., 2007, vol. 42, no. 11, pp. 1058–1062. https://doi.org/10.1002/crat.200710975

    Article  CAS  Google Scholar 

  8. Krivovichev, S.V., Shcherbakova, E.P., and Nishanbaev, T.P., The crystal structure of β-CaMg2(SO4)3, a mineral phase from coal dumps of the Chelyabinsk coal basin, Can. Mineral., 2010, vol. 48, no. 6, pp. 1469–1475. https://doi.org/10.3749/canmin.48.5.1469

    Article  CAS  Google Scholar 

  9. Pet’kov, V.I., Somov, N.V., Lavrenov, D.A., Sukhanov, M.V., and Fukina, D.G., Synthesis and structure of two phosphate representatives formed by metal cations in oxidation state III, α-CaMg2(SO4)3 analogues, Crystallogr. Rep., 2020, vol. 65, no. 5, pp. 716–720. https://doi.org/10.1134/S106377452005017X

    Article  Google Scholar 

  10. Pyatakov, A.P. and Zvezdin, A.K., Magnetoelectric and multiferroic media, Phys. Usp., 2012, vol. 55, no. 6, pp. 557–581.

    Article  CAS  Google Scholar 

  11. Dikhtyar, Y.Y., Deyneko, D.V., Boldyrev, K.N., Borovikova, E.Y., Lipatiev, A.S., Stefanovich, S.Y., and Lazoryak, B.I., Luminescent properties of Er3+ in centrosymmetric and acentric phosphates Ca8 MEr(PO4)7 (M = Ca, Mg, Zn) and Ca9–xZnxLa(PO4)7:Er3+, Mater. Res. Bull., 2021, vol. 138, p. 111244. https://doi.org/10.1016/j.materresbull.2021.111244

    Article  CAS  Google Scholar 

  12. Pet’kov, V.I., Lavrenov, D.A., Kulikova, E.V., Smirnova, N.N., and Markin, A.V., Structural characteristics, heat capacity, and thermal expansion of BiFe2(PO4)3, J. Chem. Eng. Data, 2021, vol. 66, no. 8, pp. 3020–3027. https://doi.org/10.1021/acs.jced.1c00074

    Article  CAS  Google Scholar 

  13. Pet’kov, V.I., Lavrenov, D.A., and Kovalskii, A.M., Synthesis and thermal expansion of a new family of phosphates—analogs of α-CaMg2(SO4)3, Inorg. Mater., 2021, vol. 57, no. 8, pp. 819–823. https://doi.org/10.1134/S0020168521080094

    Article  Google Scholar 

  14. Bubnova, R.S. and Filatov, S.K., Termorentgenografiya polikristallov (Thermal Properties of Polycrystals Studied by X-Ray Diffraction), part II: Opredelenie kolichestvennykh kharakteristik tenzora termicheskogo rasshireniya: uchebnoe posobie (Determination of Quantitative Characteristics of the Thermal Expansion Tensor: A Learning Guide), St. Petersburg: S.-Peterburgsk. Gos. Univ., 2013.

  15. Drebushchak, V.A., Thermal expansion of solids: review on theories, J. Therm. Anal. Calorim., 2020, vol. 142, no. 2, pp. 1097–1113. https://doi.org/10.1007/s10973-020-09370-y

    Article  CAS  Google Scholar 

  16. Tokita, M., Spark plasma sintering (SPS) method, systems, and applications, in Handbook of Advanced Ceramics, New York: Academic, 2013, pp. 1149–1177. https://doi.org/10.1016/B978-0-12-385469-8.00060-5

    Book  Google Scholar 

  17. Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M., The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J. Mater. Sci., 2006, vol. 41, pp. 763–777. https://doi.org/10.1007/s10853-006-6555-2

    Article  CAS  Google Scholar 

  18. Chuvil’deev, V.N., Boldin, M.S., Dyatlova, Ya.G., Rumyantsev, V.I., and Ordan’yan, S.S., A comparative study of the hot pressing and spark plasma sintering of Al2O3−ZrO2−Ti(C,N) powders, Inorg. Mater., 2015, vol. 51, no. 10, pp. 1047–1053. https://doi.org/10.1134/S0020168515090034

    Article  CAS  Google Scholar 

  19. Klemens, P.G., Thermal resistance due to point defects at high temperatures, Phys. Rev., 1960, vol. 119, no. 2, pp. 507–509. https://doi.org/10.1103/PhysRev.119.507

    Article  CAS  Google Scholar 

  20. Sheludyak, Yu.E., Kashporov, L.Ya., Malinin, L.A., and Tsalkov, V.N., Teplofizicheskie svoistva komponentov goryuchikh sistem (Thermophysical Properties of Components of Combustible Systems), Moscow: Nauka, 1992.

  21. Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika, (Engineering Ceramics), Moscow: Nauka, 1993.

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 23-23-00044. https://rscf.ru/project/23-23-00044/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Pet’kov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pet’kov, V.I., Lavrenov, D.A., Kovalskii, A.M. et al. BiFe2(PO4)3 Ceramics: Fabrication by Hot Pressing and Spark Plasma Sintering, Thermal Conductivity, and Thermal Diffusivity. Inorg Mater 59, 798–803 (2023). https://doi.org/10.1134/S0020168523070130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523070130

Keywords:

Navigation