Skip to main content
Log in

Phase Equilibria in the Al–Ga–As–Bi System at 900°C

  • Published:
Inorganic Materials Aims and scope

Abstract—

Solidus and liquidus isotherms in the Al–Ga–As–Bi system have been modeled for an initial epitaxy temperature of 900°C, which is needed for growing relatively thick (50–100 μm) compositionally graded AlxGa1–xAs layers. The theoretical isotherms have been confirmed by experimental data. It has been shown that, to grow relatively thick (>50 μm) AlGaAs layers, it is reasonable to use Ga–Bi mixed melts containing no more than 20 at % bismuth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Khvostikov, V.P., Pokrovskiy, P.V., Khvostikova, O.A., Panchak, A.N., and Andreev, V.M., High-efficiency AlGaAs/GaAs photovoltaic converters with edge input of laser light, Tech. Phys. Lett., 2018, vol. 44, no. 17, pp. 776–778. https://doi.org/10.1134/S1063785018090079

    Article  CAS  Google Scholar 

  2. Panchak, A., Khvostikov, V., and Pokrovskiy, P., AlGaAs gradient waveguides for vertical p/n junction GaAs laser power converters, Opt. Laser Technol., 2021, vol. 136, p. 106735. https://doi.org/10.1016/j.optlastec.2020.106735

    Article  CAS  Google Scholar 

  3. Khvostikov, V.P., Vlasov, A.S., Pokrovskiy, P.V., Khvostikova, O.A., Panchak, A.N., Marukhina, E.P., Kalyuzhnyy, N.A., and Andreev, V.M., Characterization of ultra high power laser beam PV converters, AIP Conf. Proc., 2019, vol. 2149, p. 080003. https://doi.org/10.1063/1.5124213

    Article  CAS  Google Scholar 

  4. Khvostikov, V.P., Panchak, A.N., Khvostikova, O.A., and Pokrovskiy, P.V., Side-input GaAs laser power converters with gradient AlGaAs waveguide, IEEE Electron Device Lett., 2022, vol. 43, pp. 1717–1719. https://doi.org/10.1109/LED.2022.3202987

    Article  CAS  Google Scholar 

  5. Zinovchuk, V., Malyutenko, O., Malyutenko, V., Podoltsev, A., and Vilisov, A., The effect of current crowding on the heat and light pattern in high-power AlGaAs light emitting diodes, J. Appl. Phys., 2008, vol. 104, p. 033115. https://doi.org/10.1063/1.2968220

    Article  CAS  Google Scholar 

  6. Kitabayashi, H., Ishihara, K., Kawabata, Y., Matsubara, H., Miyahara, K., Morishita, T., and Tanaka, S., Development of super high brightness infrared LEDs, SEI Tech. Rev., 2011, vol. 72, pp. 86–89.

    Google Scholar 

  7. Zhao, X., Montgomery, K., and Woodall, J., Hall effect studies of AlGaAs grown by liquid-phase epitaxy for tandem solar cell applications, J. Electron. Mater., 2014, vol. 43, no. 11, pp. 3999–4002. https://doi.org/10.1007/s11664-014-3340-x

    Article  CAS  Google Scholar 

  8. Yakusheva, N.A., Zhuravlev, K.S., and Shegai, O.A., Purification of gallium arsenide by bismuth, Sov. Phys. Semicond., 1988, vol. 22, no. 11, pp. 1320–1322.

    Google Scholar 

  9. Yakusheva, N.A., Zhuravlev, K.S., Chikichev, S.I., and Shegay, O.A., Liquid phase epitaxial growth of undoped gallium arsenide from bismuth and gallium melts, Cryst. Res. Technol., 1989, vol. 24, no. 2, pp. 235–246. https://doi.org/10.1002/crat.2170240221

    Article  CAS  Google Scholar 

  10. Biryulin, Yu.F., Vorobeva, V.V., Golubev, V.G., et al., Mechanism of purification of gallium arsenide by bismuth, Sov. Phys. Semicond., 1987, vol. 21, no. 12, pp. 1333–1338.

    Google Scholar 

  11. Saravanan, S., Jeganathan, K., Baskar, K., et al., High quality GaAs epitaxial layers grown from Ga–As–Bi solutions by liquid phase epitaxy, Jpn. J. Appl. Phys., 1997, vol. 36, no. 6A, pp. 3385–3388. https://doi.org/10.1143/JJAP.36.3385

    Article  CAS  Google Scholar 

  12. Antoshchenko, V.S., Lavrischev, Yu.V., Frantcev, Yu.V., and Antoshchenko, E.V., Calculation of the Bi–Ga–Al–As phase diagram, Kaz. Natl. Univ. Bull., Phys. Ser., 2012, vol. 41, no. 2, pp. 8–14.

    Google Scholar 

  13. Antoshchenko, V.S., Frantcev, Yu.V., Lavrischev, Yu.V., and Antoshchenko, E.V., Investigation of phase equilibria in the quinary system Sn–Bi–Ga–Al–As, Kaz. Natl. Univ. Bull., Phys. Ser., 2013, vol. 44, no. 1, pp. 11–17.

    Google Scholar 

  14. Panish, M.B., Phase equilibria in the system Al–Ga–As–Sn and electrical properties of Sn-doped liquid phase epitaxial AlxGa1–xAs, J. Appl. Phys., 1973, vol. 44, pp. 2667–2675. https://doi.org/10.1063/1.1662631

    Article  CAS  Google Scholar 

  15. Casey, H.C., Jr. and Panish, M.B., Heterostructure Lasers, New York: Academic, 1978, part B, chapter 6, pp. 71–155.

  16. Jourdan, A.S., Calculation of phase equilibria in the Ga–Bi and Ga–P–Bi systems based on a theory of regular associated solutions, Metall. Trans. B, 1976, vol. 7, pp. 191–201. https://doi.org/10.1007/BF02654917

    Article  Google Scholar 

  17. Hurle, D.T.J., A thermodynamic analysis of native point defect and dopant solubilities in zinc-blende III–V semiconductors, J. Appl. Phys., 2010, vol. 107, p. 121301. https://doi.org/10.1063/1.3386412

    Article  CAS  Google Scholar 

  18. Khvostikov, V., Khvostikova, O., Potapovich, N., Vlasov, A., and Salii, R., Estimation of interaction parameters in the Al–Ga–As–Sn–Bi system, Heliyon, 2023, vol. 9, p. e18063. https://doi.org/10.1016/j.heliyon.2023.e18063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Safarian, J., Kolbeinsen, L., and Tangstad, M., Liquidus of silicon binary systems, Metall. Mater. Trans. B, 2011, vol. 42, pp. 852–874. https://doi.org/10.1007/s11663-011-9507-4

    Article  CAS  Google Scholar 

  20. Akchurin, R.Kh., Le Din Kao, Nishanov, D.N., and Fistul, V.I., Heterogeneous equilibrium in the quasi-binary system Bi–GaAs, Izv. Akad. Nauk SSSR, Neorg. Mater., 1986, vol. 22, no. 1, pp. 9–12.

    CAS  Google Scholar 

  21. Milanova, M. and Terziyska, P., Low-temperature liquid-phase epitaxy growth from Ga–As–Bi solution, Thin Solid Films, 2006, vol. 500, pp. 15–18. https://doi.org/10.1016/j.tsf.2005.10.049

    Article  CAS  Google Scholar 

  22. Panek, M., Paszkiewicz, R., Tlaczala, M., et al., Liquid phase epitaxy (LPE) of GaAs from the Ga–Bi solutions, Proc. SPIE. Optoelectron. Integrated Circuit Mater., Phys., Devices, 1995, vol. 2397, pp. 661–665. https://doi.org/10.1117/12.206913

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 22-19-00057. https://rscf.ru/project/22-19-00057/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Khvostikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khvostikov, V.P., Khvostikova, O.A., Potapovich, N.S. et al. Phase Equilibria in the Al–Ga–As–Bi System at 900°C. Inorg Mater 59, 691–695 (2023). https://doi.org/10.1134/S0020168523070087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523070087

Keywords:

Navigation