Skip to main content
Log in

Ternary Reciprocal System Li+, K+ || Br, \({\text{WO}}_{4}^{{2 - }}\)

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the ternary reciprocal system Li+, K+ || Br, \({\text{WO}}_{4}^{{2 - }}\). A likely phase compatibility diagram of the system has been chosen using thermodynamic calculations of the enthalpy and Gibbs energy of exchange reactions and confirmed by differential thermal analysis data for the stable joins KBr–Li2WO4 and KBr–Li2WO4∙K2WO4. The stable joins have been shown to be pseudobinary systems, and their Tx phase diagrams have been mapped out. We have constructed a phase tree of the system, which has a linear structure and includes three stable triangles (LiBr–KBr–Li2WO4, KBr–Li2WO4–Li2WO4∙K2WO4, and KBr–Li2WO4∙K2WO4–K2WO4) connected to each other by two stable joins. To find ternary eutectic mixtures in the stable triangles, Tx phase diagrams for a number of sections have been constructed. We have measured the specific enthalpy of fusion of the pseudobinary and ternary eutectics. The ternary mixture with the lowest melting point in the Li+, K+ || Br, \({\text{WO}}_{4}^{{2 - }}\) system, 328°C, has the highest specific enthalpy of fusion: 200 kJ/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Goncharov, E.G., Afinogenov, Yu.P., Kondrashin, V.Yu., and Khovin, A.M., Teoreticheskie osnovy neorganicheskoi khimii (Theoretical Principles of Inorganic Chemistry), Voronezh: Voronezhsk. Gos. Univ., 2014.

  2. Denisov, V.V., Talanov, V.M., Denisova, I.A., et al., Obshchaya i neorganicheskaya khimiya (General and Inorganic Chemistry), Denisov, V.V. and Talanov, V.M., Eds., Rostov-on-Don: Feniks, 2013.

    Google Scholar 

  3. Molten Salts Chemistry and Technology, Gaune-Escard, M. and Haarberg, G.M., Eds., New York: Wiley, 2014. https://doi.org/10.1002/9781118448847

  4. Delimarskii, Yu.K., Elektrokhimiya ionnykh rasplavov (Electrochemistry of Ionic Melts), Moscow: Metallurgiya, 1978.

  5. Tret’yakov, Yu.D. and Putlyaev, V.I., Vvedenie v khimiyu tverdofaznykh materialov (Introduction to Solid-State Chemistry), Moscow: Nauka, 2006.

  6. Vasina, N.A., Gryzlova, E.S., and Shaposhnikova, S.G., Teplofizicheskie svoistva mnogokomponentnykh solevykh sistem (Thermophysical Properties of Multicomponent Salt systems), Moscow: Khimiya, 1984.

  7. Khimicheskie istochniki toka: spravochnik (Electrochemical Cells: A Handbook), Korovin, N.V. and Skundin, A.M., Eds., Moscow: Mosk. Energetichesk. Inst., 2003.

    Google Scholar 

  8. Delimarskii, Yu.K. and Barchuk, L.P., Prikladnaya khimiya ionnykh rasplavov (Applied Chemistry of Ionic Melts), Kiev: Naukova Dumka, 1988.

  9. Egortsev, G.E., Phase equilibria in systems of alkali fluorides and bromides, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Samara, 2007.

  10. Belyaev, I.N., Phase diagrams of systems of alkali metal and lead molybdates and tungstates, Zh. Neorg. Khim., 1961, vol. 6, no. 5, pp. 1178–1188.

    CAS  Google Scholar 

  11. Koshkarov, Zh.A., Lutsyk, V.I., Mokhosoev, M.V., Vorob’eva, V.P., Garkushin, I.K., and Trunin, A.S., Liquidus of the Li || WO4, F, Cl(NO3) and Li || WO4, VO3, Cl(Br) systems, Zh. Neorg. Khim., 1987, vol. 32, no. 6, pp. 1480–1483.

    CAS  Google Scholar 

  12. Koshkarov, Zh.A., Lutsyk, V.I., Mokhosoev, M.V., Garkushin, I.K., and Trunin, A.S., Liquidus of the K2WO4–KF–KI(KBr) systems, Zh. Neorg. Khim., 1987, vol. 32, no. 10, pp. 2541–2545.

    CAS  Google Scholar 

  13. Posypaiko, V.I., Vasina, N.A., and Gryzlova, E.S., Conversion method for investigation of multicomponent reciprocal systems, Dokl. Akad. Nauk SSSR, 1975, vol. 23, no. 5, pp. 1191–1194.

    Google Scholar 

  14. Posypaiko, V.I., Metody issledovaniya mnogokomponentnykh sistem (Methods for Investigation of Multicomponent Systems), Moscow: Nauka, 1978.

  15. Posypaiko, V.I., Tarasevich, S.A., Trunin, A.S., et al., Prognozirovanie khimicheskogo vzaimodeistviya v sistemakh iz mnogikh komponentov (Predicting Chemical Interaction in Multicomponent Systems), Moscow: Nauka, 1984.

  16. Garkushin, I.K. and Sukharenko, M.A., Phase tree, Prediction of crystallizing phases, and description of chemical interaction in the MgO–SiO2–TiO2 system, Inorg. Mater., 2022, vol. 58, no. 11, pp. 1191–1196. https://doi.org/10.1134/S0020168522110048

    Article  CAS  Google Scholar 

  17. Kharchenko, A.V., Egorova, E.M., Garkushin, I.K., Burchakov, A.V., Yakovlev, V.M., and Novikov, V.A., Phase complex and chemical interaction in the ternary reciprocal system Li+, Rb+ || Br, \({\text{CrO}}_{4}^{{2 - }}\), Inorg. Mater., 2022, vol. 58, no. 11, pp. 1179–1190. https://doi.org/10.1134/S002016852211008510.1134/S0020168522110085

    Article  CAS  Google Scholar 

  18. Termicheskie konstanty veshchestv. Spravochnik (Thermal Constants of Substances: A Handbook), Glushko, V.P., Ed., Moscow: VINITI, 1981, issue 10, part 1.

  19. Termicheskie konstanty veshchestv. Spravochnik (Thermal Constants of Substances: A Handbook), Glushko, V.P., Ed., Moscow: VINITI, 1981, issue 10, part 2.

  20. Svoistva neorganicheskikh soedinenii. Spravochnik (Properties of Inorganic Substances: A Handbook), Efimov, A.I., Ed., Leningrad: Khimiya, 1983.

    Google Scholar 

  21. Brown, E.M., Introduction to Thermal Analysis Techniques and Applications, New York: Kluwer, 2004. https://doi.org/10.1007/0-306-48404-8

    Book  Google Scholar 

  22. Gabbott, P., Principles and Application of Thermal Analysis, New York: Blackwell, 2008. https://doi.org/10.1002/9780470697702

    Book  Google Scholar 

  23. Wendlandt, W.W., Thermal Methods of Analysis, New York: Wiley, 1974.

    Google Scholar 

  24. Haines, P.J., Principles of Thermal Analysis and Calorimetry, Cambridge: Royal Society of Chemistry, 2002.

    Google Scholar 

  25. Egunov, V.P., Garkushin, I.K., Frolov, E.I., and Moshchenskii, Yu.V., Termicheskii analiz i kalorimetriya (Thermal Analysis and Calorimetry), Samara: Samarsk. Gos. Tekh. Univ., 2013.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Istomova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Istomova, M.A., Garkushin, I.K. Ternary Reciprocal System Li+, K+ || Br, \({\text{WO}}_{4}^{{2 - }}\). Inorg Mater 59, 790–797 (2023). https://doi.org/10.1134/S0020168523070063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523070063

Keywords:

Navigation