Skip to main content
Log in

Synthesis and Characterization of a Cathode Material for Sodium-Ion Batteries Based on a Composite of Sodium Vanadium(III) Phosphate and Expanded Graphite

  • Published:
Inorganic Materials Aims and scope

Abstract—

In this paper, we report an improved solid-state synthesis of Na3V2(PO4)3 isostructural with the NASICON superionic conductor and ranging in particle size from 0.5 to 4.5 μm with the use of spray drying of an aqueous solution of precursors, followed by annealing in a nitrogen atmosphere. The specific capacity of a composite of the synthesized Na3V2(PO4)3 and expanded graphite reaches 117.00 mAh/g at a charge–discharge rate of C/20 and drops to 76.73 mAh/g after 200 cycles in charge–discharge life tests at a charge–discharge rate of 1C. The apparent diffusion coefficient of sodium ions in the solid phase of the Na3V2(PO4)3/C composite for deintercalation and intercalation processes is 5.87 × 10–11 and 4.60 × 10–11 cm2/s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Goodenough, J.B. and Park, K.S., The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 2013, vol. 135, no. 4, pp. 1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  2. Fang, Y., Xiao, L., Qian, J., Cao, Y., and Yang, H., 3D graphene decorated NaTi2(PO4)3 microspheres as a superior high-rate and ultracycle-stable anode material for sodium ion batteries, Adv. Energy Mater., 2016, vol. 6, p. 1502197. https://doi.org/10.1002/aenm.201502197

    Article  CAS  Google Scholar 

  3. Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., and Nakayama, T., Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries, Adv. Funct. Mater., 2011, vol. 21, no. 20, pp. 3859–3867. https://doi.org/10.1002/adfm.201100854

    Article  CAS  Google Scholar 

  4. Zeng, X., Peng, J., Guo, Y., Zhu, H., and Huang, X., Research progress on Na3V2(PO4)3 cathode material of sodium ion battery, Front. Chem., 2020, vol. 8, p. 635. https://doi.org/10.3389/fchem.2020.00635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deng, J., Luo, W.B., Chou, S.L., Liu, H.K., and Dou, S.X., Sodium-ion batteries: from academic research to practical commercialization, Adv. Energy Mater, 2018, vol. 8, no. 4, p. 1701428. https://doi.org/10.1002/aenm.201701428

    Article  CAS  Google Scholar 

  6. Komaba, S., Takei, C., Nakayama, T., Ogata, A., and Yabuuchi, N., Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2, Electrochem. Commun., 2010, vol. 12, no. 3, pp. 355–358. https://doi.org/10.1016/j.elecom.2009.12.033

    Article  CAS  Google Scholar 

  7. Klee, R., Aragón, M.J., Lavela, P., Alcántara, R., and Tirado, J.L., Na3V2(PO4)3/C nanorods with improved electrode–electrolyte interface as cathode material for sodium-ion batteries, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 35, pp. 23151–23159. https://doi.org/10.1021/acsami.6b07950

    Article  CAS  PubMed  Google Scholar 

  8. Tepavcevic, S., Xiong, H., Stamenkovic, V.R., Zuo, X., Balasubramanian, M., and Prakapenka, V.B., Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries, ACS Nano, 2012, vol. 6, no. 1, pp. 530–538. https://doi.org/10.1021/nn203869a

    Article  CAS  PubMed  Google Scholar 

  9. Qi, Y., Mu, L., Zhao, J., Hu, Y.S., Liu, H., and Dai, S., Superior Na-storage performance of low-temperature-synthesized Na3(VO1−xPO4)2F1+2x (0 ≤ x ≤ 1) nanoparticles for Na-ion batteries, Angew. Chem., Int. Ed., 2015, vol. 54, no. 34, pp. 9911–9916. https://doi.org/10.1002/anie.201503188

    Article  CAS  Google Scholar 

  10. Li, H., Zhu, Z.Q., and Duan, W., Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, no. 23, pp. 8668–8675. https://doi.org/10.1039/C4TA00106K

    Article  Google Scholar 

  11. Kabbour, H., Coillot, D., Colmont, M., Masquelier, C., and Mentré, O., α-Na3M2(PO4)3 (M = Ti, Fe): absolute cationic ordering in NASICON-type phases, J. Am. Chem. Soc., 2011, vol. 133, no. 31, pp. 11900–11903. https://doi.org/10.1021/ja204321y

    Article  CAS  PubMed  Google Scholar 

  12. Kang, J.W., Baek, S., Mathew, V., Gim, J., Song, J.J., and Park, H., High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries, J. Mater. Chem., 2012, vol. 22, no. 39, pp. 20857–20860. https://doi.org/10.1039/c2jm34451c

    Article  CAS  Google Scholar 

  13. Zheng, Q., Yi, H.M., Li, X.F., and Zhang, H.M., Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage, J. Energy Chem., 2018, vol. 27, no. 6, pp. 1597–1617. https://doi.org/10.1016/J.JECHEM.2018.05.001

    Article  Google Scholar 

  14. Lim, S.J., Han, D.W., Nam, D.H., Hong, K.S., Eom, J.Y., and Ryu, W.H., Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, no. 46, pp. 19623–19632. https://doi.org/10.1039/C4TA03948C

    Article  CAS  Google Scholar 

  15. Ren, W.H., Zheng, Z.P., Xu, C., Niu, C.J., Wei, Q.L., and An, Q.Y., Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries, Nano Energy, 2016, vol. 25, pp. 145–153. https://doi.org/10.1016/j.nanoen.2016.03.018

    Article  CAS  Google Scholar 

  16. Zatovsk, I.V., NASICON-type Na3V2(PO4)3, Acta Crystallogr., Sect. E, 2010, vol. 66, no. 2, p. i12. https://doi.org/10.1107/S1600536810002801

    Article  CAS  Google Scholar 

  17. Lim, S.Y., Kim, H., Shakoor, R.A., Jung, Y., and Choi, J.W., Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study, J. Electrochem. Soc., 2012, vol. 159, no. 9, pp. A1393–A1397. https://doi.org/10.1149/2.015209jes

    Article  CAS  Google Scholar 

  18. Wang, M., Huang, X., Wang, H., Zhou, T., Xie, H., and Ren, Y., Synthesis and electrochemical performances of Na3V2(PO4)2F3/C composites as cathode materials for sodium ion batteries, RSC Adv., 2019, vol. 9, pp. 30628–30636. https://doi.org/10.1039/c9ra05089b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Böckenfeld, N. and Balducci, A., Determination of sodium ion diffusion coefficients in sodium vanadium phosphate, J. Solid State Electrochem., 2014, vol. 18, no. 4, pp. 959–964. https://doi.org/10.1007/s10008-013-2342-6

    Article  CAS  Google Scholar 

  20. Zhou, X.C., Liu, Y.M., and Guo, Y.L., Effect of reduction agent on the performance of Li3V2(PO4)3/C positive material by one-step solid-state reaction, Electrochim. Acta, 2009, vol. 54, no. 14, pp. 2253–2258. https://doi.org/10.1016/j.electacta.2008.10.062

    Article  CAS  Google Scholar 

  21. Rui, X.H., Yan, Q.Y., Skyllas-Kazacos, M., and Lim, T.M., Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review, J. Power Sources, 2014, vol. 258, pp. 19–38. https://doi.org/10.1016/j.jpowsour.2014.01.126

    Article  CAS  Google Scholar 

  22. Wang, D., Chen, N., Li, M., Wang, C., Ehrenberg, H., Bie, X., Wei, Y., Chen, G., and Du, F., Na3V2(PO4)3/C composite as the intercalation-type anode material for sodium-ion batteries with superior rate capability and long-cycle life, J. Mater. Chem. A, 2015, vol. 3, no. 16, pp. 8636–8642. https://doi.org/10.1039/C5TA00528K

    Article  CAS  Google Scholar 

  23. Wang, Q., Cheng, B.M., Zhong, H.Y., Wang, Q.H., and Zhong, S.W., Effect of sol–gel-method on crystal growth and electrochemical properties of Na3V2(PO4)3, Chin. J. Power Sources, 2019, vol. 43, no. 21, pp. 559–561. https://doi.org/10.3969/j.issn.1002-087X.2019.04.005

    Article  Google Scholar 

  24. Ruan, Y.L., Liu, J.J., Song, S.D., Jiang, N.Y., and Battaglia, V., Multi-hierarchical nanosheet-assembled chrysanthemum-structured Na3V2(PO4)3/C as electrode materials for high-performance sodium-ion batteries, Ionics, 2017, vol. 24, pp. 1663–1673. https://doi.org/10.1007/s11581-017-2342-0

    Article  CAS  Google Scholar 

  25. Liu, H., Rahm, E., Holze, R., and Wu, H.Q., Cathode materials for lithium ion batteries prepared by sol–gel methods, J. Solid State Electrochem., 2004, vol. 8, no. 7, pp. 450–466. https://doi.org/10.1007/s10008-004-0521-1

    Article  CAS  Google Scholar 

  26. Gao, M.R., Xu, Y.F., Jiang, J., and Yu, S.H., Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices, Chem. Soc. Rev., 2013, vol. 42, no. 7, pp. 2986–3017. https://doi.org/10.1039/c2cs35310e

    Article  CAS  PubMed  Google Scholar 

  27. Zhu, Q., Cheng, H., Zhang, X.M., He, L.Q., Hu, L.Z., Yang, J.W., Chen, Q.Q., and Lu, Z.G., Improvement in electrochemical performance of Na3V2(PO4)3/C cathode material for sodium-ion batteries by K–Ca co-doping, Electrochim. Acta, 2018, vol. 281, pp. 208–217. https://doi.org/10.1016/j.electacta.2018.05.174

    Article  CAS  Google Scholar 

  28. Novikov, V.P. and Kirik, S.A., Bel. Patent 17336, 2013.

  29. Ozerova, V.V., Novikova, S.A., Chekannikov, A.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Electrochemical intercalation of sodium into composites based on iron(III) phosphate and carbon, Inorg. Mater., 2019, vol. 55, no. 5, pp. 462–469. https://doi.org/10.1134/S0020168519050169

    Article  CAS  Google Scholar 

  30. Kapaev, R., Chekannikov, A., Novikova, S., Yaroslavtsev, S., Kulova, T., Rusakov, V., Skundin, A., and Yaroslavtsev, A., Mechanochemical treatment of maricite-type NaFePO4 for achieving high electrochemical performance, J. Solid State Electrochem., 2017, vol. 21, pp. 2373–2380. https://doi.org/10.1007/s10008-017-3592-5

    Article  CAS  Google Scholar 

  31. Vasil’eva, V.I., Goleva, E.A., Selemenev, V.F., Karpov, S.I., and Smagin, M.A., IR spectroscopic study of the mechanism of phenylalanine sorption from aqueous solutions by a shaped sulfonic acid cation-exchange membrane with a styrene–divinylbenzene matrix, Russ. J. Phys. Chem. A, 2019, vol. 93, no. 3, pp. 542–550.

    Article  Google Scholar 

  32. Sarimsakova, N.S., Faizullaev, N.I., and Bakieva, Kh.A., Reaction mechanism and kinetics underlying the preparation of diethyl ether from acetic acid, Universum: Tekh. Nauki, 2021, vol. 5, no. 86. https://7universum.com/ru/tech/archive/item/11751.

  33. Kosova, N.V. and Rezepova, D.O., Na1+yVPO4F1+y (0 ≤ y ≤ 0.5) as cathode materials for hybrid Na/Li batteries, Inorganics, 2017, vol. 5, pp. 19–21.

    Article  Google Scholar 

Download references

Funding

This work was supported through the Knowledge-Intensive Technologies and Engineering state program, subprogram no. 7, task no. 5 (Republic of Belarus).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zhilinskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, I., Zhilinskii, V.V. & Novikov, V.P. Synthesis and Characterization of a Cathode Material for Sodium-Ion Batteries Based on a Composite of Sodium Vanadium(III) Phosphate and Expanded Graphite. Inorg Mater 59, 611–618 (2023). https://doi.org/10.1134/S0020168523060146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523060146

Keywords:

Navigation