Skip to main content
Log in

Experimental Study of the Binary System Mg3(PO4)2–Mg4Na(PO4)3

  • Published:
Inorganic Materials Aims and scope

Abstract—

The Mg3(PO4)2–Mg4Na(PO4)3 system has been studied using thermal analysis, X-ray diffraction, and X-ray microanalysis. Firing the constituent phosphates at 800°C has been shown to cause no phase changes, whereas firing above 1000°C leads to the formation of a single-phase material, which is due to the incongruent melting of the magnesium sodium double orthophosphate Mg4Na(PO4)3. The homogeneity range of the compounds in the Mg3(PO4)2–Mg4Na(PO4)3 system differing in composition has been determined by X-ray microanalysis. The microstructure of Mg3–xNa2x(PO4)2-based ceramic materials prepared by sintering at a temperature of 1000°C has an average grain size under 10 μm. The synthesized bioceramic materials are potentially attractive for use as implants for bone tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Safronova, T.V., Inorganic materials for regenerative medicine, Inorg. Mater., 2021, vol. 57, no. 5, pp. 443–474. https://doi.org/10.1134/S002016852105006X

    Article  CAS  Google Scholar 

  2. Fadeeva, I.V., Fomin, A.S., Barinov, S.M., Davydova, G.A., Selezneva, I.I., Preobrazhenskii, I.I., Rusakov, M.K., Fomina, A.A., and Volchenkova, V.A., Synthesis and properties of manganese-containing calcium phosphate materials, Inorg. Mater., 2020, vol. 56, no. 7, pp. 700–706. https://doi.org/10.1134/S0020168520070055

    Article  CAS  Google Scholar 

  3. Wang, X., Zhai, D., Yao, X., Wang, Y., Ma, H., Yu, X., Du, L., Lin, H., and Wu, C., 3D printing of pink bioceramic scaffolds for bone tumor tissue therapy, Appl. Mater. Today, 2022, vol. 27, p. 101443. https://doi.org/10.1016/j.apmt.2022.101443

    Article  Google Scholar 

  4. Golovanova, O.A., Preparation of calcium phosphate/chitosan granules, Inorg. Mater., 2021, vol. 57, no. 9, pp. 950–957. https://doi.org/10.1134/S0020168521090090

    Article  CAS  Google Scholar 

  5. Preobrazhenskiy, I.I., Tikhonov, A.A., Evdokimov, P.V., Shibaev, A.V., and Putlyaev, V.I., DLP printing of hydrogel/calcium phosphate composites for the treatment of bone defects, Open Ceram., 2021, vol. 6, p. 100115. https://doi.org/10.1016/j.oceram.2021.100115

    Article  CAS  Google Scholar 

  6. Solonenko, A.P., Blesman, A.I., Polonyankin, D.A., and Gorbunov, V.A., Calcium phosphate and calcium silicate composites, Russ. J. Inorg. Chem., 2018, vol. 63, no. 8, pp. 993–1000. https://doi.org/10.1134/S0036023618080211

    Article  CAS  Google Scholar 

  7. Preobrazhensky, I.I., Tikhonov, A.A., Klimashina, E.S., Evdokimov, P.V., and Putlyaev, V.I., Swelling of acrylate hydrogels filled with brushite and octacalcium phosphate, Russ. Chem. Bull., 2020, vol. 69, pp. 1601–1603. https://doi.org/10.1007/s11172-020-2942-0

    Article  CAS  Google Scholar 

  8. Preobrazhenskii, I.I. and Putlyaev, V.I., 3D printing of hydrogel-based biocompatible materials, Russ. J. Appl. Chem., 2022, vol. 95, no. 6, pp. 775–788. https://doi.org/10.1134/S1070427222060027

    Article  CAS  Google Scholar 

  9. Sun, H., Zhang, C., Zhang, B., Song, P., Xu, X., Gui, X., Chen, X., Lu, G., Li, X., Liang, J., Sun, J., Jiang, Q., Zhou, C., Fan, Y., Zhou, X., and Zhang, X., 3D printed calcium phosphate scaffolds with controlled release of osteogenic drugs for bone regeneration, Chem. Eng. J., 2022, vol. 427, p. 130961. https://doi.org/10.1016/j.cej.2021.130961

    Article  CAS  Google Scholar 

  10. Fadeeva, I.V., Goldberg, M.A., Preobrazhensky, I.I., Mamin, G.V., Davidova, G.A., Agafonova, N.V., Fosca, M., Russo, F., Barinov, S.M., Cavalu, S., and Rau, J.V., Improved cytocompatibility and antibacterial properties of zinc-substituted brushite bone cement based on β-tricalcium phosphate, J. Mater. Sci.: Mater. Med., 2021, vol. 32, no. 9, pp. 1–12. https://doi.org/10.1007/s10856-021-06575-x

    Article  CAS  Google Scholar 

  11. Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., Tao, H., Zhang, Y., He, Y., Jiang, Y., and Bian, Y., Research on an Mg–Zn alloy as a degradable biomaterial, Acta Biomater., 2010, vol. 6, no. 2, pp. 626–640. https://doi.org/10.1016/j.actbio.2009.06.028

    Article  CAS  PubMed  Google Scholar 

  12. Salimi, M.H., Heughebaert, J.C., and Nancollas, G.H., Crystal growth of calcium phosphates in the presence of magnesium ions, Langmuir, 1985, vol. 1, no. 1, pp. 119–122. https://doi.org/10.1021/la00061a019

    Article  CAS  Google Scholar 

  13. Liu, M., Liu, H., Feng, F., Xie, A., Kang, G.J., Zhao, Y., Hou, C.R., Zhou, X., and Dudley, S.C., Jr., Magnesium deficiency causes a reversible, metabolic, diastolic cardiomyopathy, J. Am. Heart Assoc., 2021, p. e020205. https://doi.org/10.1161/JAHA.120.020205

  14. Gronowicz, G. and McCarthy, M.B., Response of human osteoblasts to implant materials: integrin-mediated adhesion, J. Orthop. Res., 1996, vol. 14, no. 6, pp. 878–887. https://doi.org/10.1002/jor.1100140606

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, X., Yang, Z., Liu, Q., Yang, P., Wang, P., Wei, S., Liu, A., and Zhao, Z., Potential load-bearing bone substitution material: carbon-fiber-reinforced magnesium-doped hydroxyapatite composites with excellent mechanical performance and tailored biological properties, ACS Biomater. Eng., 2022. https://doi.org/10.1021/acsbiomaterials.1c01247

    Book  Google Scholar 

  16. Chau, C., Qiao, F., and Li, Z., Potentiometric study of the formation of magnesium potassium phosphate hexahydrate, J. Mater. Civil Eng., 2012, vol. 24, no. 5, pp. 586–591. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000410

    Article  CAS  Google Scholar 

  17. Ewald, A., Helmschrott, K., Knebl, G., Mehrban, N., Grover, L.M., and Gbureck, U., Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells, J. Biomed. Mater. Res., Part B: Appl. Biomater., 2011, vol. 96, no. 2, pp. 326–332. https://doi.org/10.1002/jbm.b.31771

    Article  CAS  Google Scholar 

  18. Nikitina, Yu.O., Petrakova, N.V., Ashmarin, A.A., Titov, D.D., Shevtsov, S.V., Penkina, T.N., Kuvshinova, E.A., Barinov, S.M., Komlev, V.S., and Sergeeva, N.S., Preparation and properties of copper-substituted hydroxyapatite powders and ceramics, Inorg. Mater., 2019, vol. 55, no. 10, pp. 1061–1067. https://doi.org/10.1134/S002016851910011X

    Article  CAS  Google Scholar 

  19. Preobrazhenskiy, I.I. and Putlyaev, V.I., Synthesis and phase transformations of compounds in the Mg4Na(PO4)3–Mg3(PO4)2 system as promising phases for the fabrication of bioceramics, Inorg. Mater., 2022, vol. 58, no. 4, pp. 349–355. https://doi.org/10.1134/S0020168522030128

    Article  CAS  Google Scholar 

  20. Abbona, F., Madsen, H.L., and Boistelle, R., Crystallization of two magnesium phosphates, struvite and newberyite: effect of pH and concentration, J. Cryst. Growth, 1982, vol. 57, no. 1, pp. 6–14. https://doi.org/10.1016/0022-0248(82)90242-1

    Article  CAS  Google Scholar 

  21. PDF-4+ Database (release 2010), Newtown Square: International Centre for Diffraction Data, 2010. http://www.icdd.com/products/pdf2.htm.

  22. Majling, J. and Hanic, F., Phase coexistence in the system Mg3(PO4)2–Ca3(PO4)2–Na3PO4, Chem. Zvesti, 1976, vol. 30, no. 2, pp. 145–152.

    CAS  Google Scholar 

  23. Kushkevych, I., Abdulina, D., Dordević, D., Rozehnalová, M., Vítězová, M., Černý, M., Svoboda, P., and Rittmann, M.R., Basic bioelement contents in anaerobic intestinal sulfate-reducing bacteria, Appl. Sci., 2021, vol. 11, no. 3, p. 1152. https://doi.org/10.3390/app11031152

    Article  CAS  Google Scholar 

  24. Martínez-Moreno, D., Jiménez, G., Chocarro-Wrona, C., Carrillo, E., Montañez, E., Galocha-León, C., Clares-Naveros, B., Gálvez-Martín, P., Rus, G., de Vicente, J., and Marchal, J.A., Pore geometry influences growth and cell adhesion of infrapatellar mesenchymal stem cells in biofabricated 3D thermoplastic scaffolds useful for cartilage tissue engineering, Mater. Sci. Eng., C, 2021, vol. 122, p. 111933. https://doi.org/10.1016/j.msec.2021.111933

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 22-19-00219.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Preobrazhenskiy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preobrazhenskiy, I.I., Filippov, Y.Y., Evdokimov, P.V. et al. Experimental Study of the Binary System Mg3(PO4)2–Mg4Na(PO4)3. Inorg Mater 59, 500–506 (2023). https://doi.org/10.1134/S002016852305014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852305014X

Keywords:

Navigation